Problem of collision avoidance for a group motion with obstacles
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 134-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to the problem of coordinated control for a flock of control systems moving jointly towards a target set with the requirement of noncollision of its elements. In the present paper, we consider its subproblem, which is formulated as follows. During the motion to the target, the members of the group must stay within a virtual ellipsoidal container, which forms a reference motion (“tube”). The container avoids obstacles, which are known in advance, by means of reconfigurations. In response, the flock must rearrange itself inside the container, avoiding collisions between its members. The present paper is concerned with the behavior of the flock inside the container, when the flock coordinates its motions according to the evolution of the container.
Keywords: group control, flock, target set, ellipsoidal trajectory, reference motion, noncollision
Mots-clés : obstacles, coordination.
@article{TIMM_2015_21_2_a10,
     author = {A. B. Kurzhanskii},
     title = {Problem of collision avoidance for a group motion with obstacles},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {134--149},
     year = {2015},
     volume = {21},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a10/}
}
TY  - JOUR
AU  - A. B. Kurzhanskii
TI  - Problem of collision avoidance for a group motion with obstacles
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 134
EP  - 149
VL  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a10/
LA  - ru
ID  - TIMM_2015_21_2_a10
ER  - 
%0 Journal Article
%A A. B. Kurzhanskii
%T Problem of collision avoidance for a group motion with obstacles
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 134-149
%V 21
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a10/
%G ru
%F TIMM_2015_21_2_a10
A. B. Kurzhanskii. Problem of collision avoidance for a group motion with obstacles. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 2, pp. 134-149. http://geodesic.mathdoc.fr/item/TIMM_2015_21_2_a10/

[1] Kurzhanskii A.B., “O zadache gruppovogo upravleniya v usloviyakh prepyatstvii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:3 (2014), 166–179 | MR

[2] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes. Theory and computation, Systems Control: Foundations Appl., Birkhauser, Boston, 2014, 445 pp. | DOI | MR | Zbl

[3] Kurzhanskii A.B., Mesyats A.I., “Optimalnoe upravlenie ellipsoidalnymi dvizheniyami”, Differents. uravneniya, 18:12 (2012), 1525–1532

[4] Kurzhanskii A.B., Mesyats A.I., “Upravlenie ellipsoidalnymi traektoriyami. Teoriya i vychisleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 54:3 (2014), 404–414 | DOI | MR

[5] Krasovskii N.N., Subbotin A.N., Game-theoretical control problems, Springer-Verlag, New York; Berlin; Heidelberg, 1988, 517 pp. | MR

[6] Subbotin A.I., Generalized solutions of first-order PDE's. The dynamic optimization perspective, Systems Control: Foundations Appl., Birkhauser, Boston, 1995, 312 pp. | MR

[7] Subbotina N.N.,Kolpakova E.A., Tokmantsev T.B., Shagalova L.G., Metod kharakteristik dlya uravneniya Gamiltona-Yakobi-Bellmana, Izd-vo UrO RAN, Ekaterinburg, 2013, 244 pp.

[8] Crandall M.G., Lions P-L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–41 | DOI | MR

[9] Kurzhanski A.B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR

[10] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, P.R. Wolenski, Nonsmooth analysis and control theory, Graduate Texts in Mathematics, 178, Springer-Verlag, New York, 1998, 278 pp. | MR | Zbl

[11] Rockafellar R.T., Wets R.J-B., Variational analysis, Grundlehren der mathematischen Wissenschaften, 317, Springer, New York, 2004, 733 pp. | MR

[12] Demyanov V.F., Minimaks: differentsiruemost po napravleniyam, Izd-vo LGU, L., 1974, 112 pp. | MR

[13] Chang D.E., Shadden S., Marsden J., Olfati-Sabe R., “Collision avoidance for multiple agent systems”, Proc. of 42nd IEEE Conference on Decision and Control, 1, Maui, Hawai, 2003, 539–543

[14] Junge O., Ober-Bloebaum S., “Optimal reconfiguration of formation flying satellites”, Proc. of 44th IEEE Conference on Decision and Control, and European Control Conference (ECC), Seville, 2005, 66–71 | DOI

[15] Olfati-Saber R., “Flocking for multi-agent dynamic systems : algorithms and theory”, IEEE Trans. Automatic Control, 51:3 (2006), 401–420 | DOI | MR

[16] Gusev M.I., Kurzhanskii A.B., “K optimizatsii upravlyaemykh sistem pri nalichii ogranichenii I”, Differents. uravneniya, 7:9 (1971), 1591–1602 | MR | Zbl

[17] Kurzhanski A.B., Mitchell I.M., Varaiya P., “Optimization techniques for state-constrained control and obstacle problems”, Proc. of the 6th IFAC Symposium NOLCOS-2004, Stuttgart, 2004, 813–818

[18] Filippov A.F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 255 pp. | MR

[19] Kurzhanskii A.B., Darin A.N., “Parallelnyi algoritm vychisleniya invariantnykh mnozhestv lineinykh sistem bolshoi razmernosti pri neopredelennykh vozmuscheniyakh”, Zhurn. vychisl. matematiki i mat. fiziki, 53:1 (2013), 47–57 | DOI | MR