A two-sided error estimate for a regularizing method based on M.M. Lavrent'ev's method
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 238-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an operator equation of the first kind with error in the operator and in the right-hand side of the equation. The method is a function of this operator depending on a positive parameter $\alpha$. A lower estimate of a method of solving this equation for any value of $\alpha$ is obtained. A regularizing method based on Lavrent'ev's method is constructed, and a two-sided error estimate is obtained for this method. Discrete approximations of Lavrent'ev's method are constructed. Error estimates are obtained for these approximations. The discrete approximations were further used for a perturbation of the operator in the equation.
Keywords: operator equation; regularization; error estimation; ill-posed problem.
@article{TIMM_2015_21_1_a24,
     author = {V. P. Tanana and A. I. Sidikova},
     title = {A two-sided error estimate for a regularizing method based on {M.M.} {Lavrent'ev's} method},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {238--249},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a24/}
}
TY  - JOUR
AU  - V. P. Tanana
AU  - A. I. Sidikova
TI  - A two-sided error estimate for a regularizing method based on M.M. Lavrent'ev's method
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 238
EP  - 249
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a24/
LA  - ru
ID  - TIMM_2015_21_1_a24
ER  - 
%0 Journal Article
%A V. P. Tanana
%A A. I. Sidikova
%T A two-sided error estimate for a regularizing method based on M.M. Lavrent'ev's method
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 238-249
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a24/
%G ru
%F TIMM_2015_21_1_a24
V. P. Tanana; A. I. Sidikova. A two-sided error estimate for a regularizing method based on M.M. Lavrent'ev's method. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 238-249. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a24/

[1] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 208 pp. | MR

[2] Vasin V.V., “Diskretnaya skhodimost i konechnomernaya approksimatsiya regulyarizuyuschikh algoritmov”, Zhurn. vychisl. matematiki i mat. fiziki, 19:1 (1979), 11–21 | MR | Zbl

[3] Vasin V.V., Ageev A.L., Nekorrektnye zadachi s apriornoi informatsiei, Nauka, Ekaterinburg, 1993, 261 pp. | MR

[4] Goncharskii A.V., Leonov A.S., Yagola A.G., “Konechnoraznostnaya approksimatsiya lineinykh nekorrektnykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 14:1 (1974), 15–24

[5] Danilin A.R., “Ob usloviyakh skhodimosti konechnomernykh approksimatsii metoda nevyazki”, Izv. vuzov. Matematika, 1980, no. 11, 38–40 | MR | Zbl

[6] Danilin A.R., “Ob optimalnykh po poryadku otsenkakh konechnomernykh approksimatsii reshenii nekorrektnykh zadach”, Zhurn. vychisl. matematiki. i mat. fiziki, 25:8 (1985), 1123–1130 | MR | Zbl

[7] Tanana V.P., “Ob optimalnosti metodov regulyarizatsii pri reshenii vyrozhdennykh operatornykh uravnenii”, Izv. vuzov. Matematika, 1985, no. 9, 75–76 | MR | Zbl

[8] Lavrentev M.M., “Ob integralnykh uravneniyakh pervogo roda”, Dokl. AN SSSR, 127:1 (1959), 31–33 | MR | Zbl

[9] Lattes R., Lions Zh.L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970, 336 pp. | MR

[10] Tanana V.P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981, 158 pp. | MR

[11] Bakushinskii A.B., “Odin obschii priem postroeniya regulyarizuyuschikh algoritmov dlya lineinogo nekorrektnogo uravneniya v gilbertovom prostranstve”, Zhurn. vychisl. matematiki i mat. fiziki, 7:3 (1967), 672–677

[12] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989, 624 pp. | MR

[13] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR