Finite groups in which all maximal subgroups are $\pi$-closed. I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 25-34

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite simple nonabelian groups $G$ that are not $\pi$-closed for some set of primes $\pi$ but have $\pi$-closed maximal subgroups (property $(*)$ for $(G,\pi)$) are studied. We give a list $\mathcal{L}$ of finite simple groups that contains any group $G$ with the above property (for some $\pi$). It is proved that $2\not\in\pi$ for any pair $(G,\pi)$ with property $(*)$ (Theorem 1). In addition, we specify for any sporadic simple group $G$ from $\mathcal{L}$ all sets of primes $\pi$ such that the pair $(G,\pi)$ has property $(*)$ (Theorem 2). The proof uses the author's results on the control of prime spectra of finite simple groups.
Keywords: finite group; simple group; $\pi$-closed group; maximal subgroup; control of prime spectrum of a group.
@article{TIMM_2015_21_1_a2,
     author = {V. A. Belonogov},
     title = {Finite  groups in which all maximal subgroups are $\pi$-closed. {I}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {25--34},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a2/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Finite  groups in which all maximal subgroups are $\pi$-closed. I
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 25
EP  - 34
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a2/
LA  - ru
ID  - TIMM_2015_21_1_a2
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Finite  groups in which all maximal subgroups are $\pi$-closed. I
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 25-34
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a2/
%G ru
%F TIMM_2015_21_1_a2
V. A. Belonogov. Finite  groups in which all maximal subgroups are $\pi$-closed. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 25-34. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a2/