Finite groups in which all maximal subgroups are $\pi$-closed. I
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 25-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Finite simple nonabelian groups $G$ that are not $\pi$-closed for some set of primes $\pi$ but have $\pi$-closed maximal subgroups (property $(*)$ for $(G,\pi)$) are studied. We give a list $\mathcal{L}$ of finite simple groups that contains any group $G$ with the above property (for some $\pi$). It is proved that $2\not\in\pi$ for any pair $(G,\pi)$ with property $(*)$ (Theorem 1). In addition, we specify for any sporadic simple group $G$ from $\mathcal{L}$ all sets of primes $\pi$ such that the pair $(G,\pi)$ has property $(*)$ (Theorem 2). The proof uses the author's results on the control of prime spectra of finite simple groups.
Keywords: finite group; simple group; $\pi$-closed group; maximal subgroup; control of prime spectrum of a group.
@article{TIMM_2015_21_1_a2,
     author = {V. A. Belonogov},
     title = {Finite groups in which all maximal subgroups are $\pi$-closed. {I}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {25--34},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a2/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - Finite groups in which all maximal subgroups are $\pi$-closed. I
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 25
EP  - 34
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a2/
LA  - ru
ID  - TIMM_2015_21_1_a2
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T Finite groups in which all maximal subgroups are $\pi$-closed. I
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 25-34
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a2/
%G ru
%F TIMM_2015_21_1_a2
V. A. Belonogov. Finite groups in which all maximal subgroups are $\pi$-closed. I. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 25-34. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a2/

[1] Miller G.A., Moreno H., “Nonabelian groups in which every subgroup is abelian”, Trans. Amer. Math. Soc, 1903, no. 4, 398–404 | DOI | MR | Zbl

[2] Shmidt O.Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Mat. sb., 31:3–4 (1924), 366–372

[3] Huppert B., “Normalteiler and maximale Untergruppen endlicher Gruppen”, Math. Z., 1954, no. 60, 409–434 | DOI | MR | Zbl

[4] Doerk K., “Minimal nicht uberauflosbare, endliche Gruppen”, Math. Z., 1966, no. 91, 198–205 | DOI | MR | Zbl

[5] Starostin A.I., “O minimalnykh gruppakh, ne obladayuschikh dannym svoistvom”, Mat. zametki, 3:1 (1968), 33–37 | MR | Zbl

[6] Shemetkov L.A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[7] Belonogov V.A., “O konechnykh gruppakh, nasyschennykh $(\pi,\pi')$-razlozhimymi podgruppami”, Sib. mat. zhurn, 10:3 (1969), 494–506 | MR

[8] Arad Z., Chillag D., “A criterium for the existence of normal $\pi$-complements in finite groups”, J. Algebra, 87:2 (1984), 472–482 | DOI | MR | Zbl

[9] Belonogov V.A., “O kontrole prostogo spektra konechnoi prostoi gruppy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:3 (2013), 29–44

[10] Belonogov V.A., “O konechnykh gruppakh, vse maksimalnye podgruppy kotorykh $\pi$-zamknuty”, Mezhdunar. shk.-konf. po teorii grupp, posvyasch. 70-letiyu V.V. Kabanova, tez. dokl., Izd-vo Kabard.-Balkar. gos. un-ta, Nalchik, 2014, 6–9

[11] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Math. Surveys and Monographs, 40, no. 1, Amer. Math. Soc., Providence, 1994, 179 pp. | DOI | MR | Zbl

[12] Belonogov V.A., “Konechnye gruppy, vse $2$-maksimalnye podgruppy kotorykh $\pi$-razlozhimy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:2 (2014), 29–43

[13] Gorenstein D., Finite groups, Harper Row, New York, 1968, 542 pp. | MR | Zbl

[14] Huppert B., Endliche Gruppen, v. I, Springer, Berlin, 1967, 805 pp. | MR | Zbl

[15] Willson R.A., The finite simple groups, Springer-Verlag, London, 2009, 313 pp. | MR

[16] J.H. Conway, R.T. Curtis, S.P. Norten, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985, 285 pp. | MR | Zbl

[17] Belonogov V.A., “Finite groups in which all maximal subgroups are $\pi$-closed”, Maltsevskie chteniya, tez. dokl., In-t matematiki SO RAN. Novosibirsk, 2014, 86

[18] Bray J.N., Holt D.F., Roney-Dougal C.M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge University Press, Cambridge, 2013, 452 pp. | MR | Zbl