Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 197-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the pseudovariety generated by all finite monoids on which Green's relations $\mathscr{R}$ and $\mathscr{H}$ coincide. It is shown that any finite monoid $S$ belonging to this pseudovariety divides the monoid of all upper-triangular row-monomial matrices over a finite group with zero adjoined. The proof is constructive; given a monoid $S$, the corresponding group and the order of matrices can be effectively found.
Keywords: finite monoids; monoid pseudovariety; upper-triangular matrices; Green's relations; $\mathscr{R}$-trivial monoids.
@article{TIMM_2015_21_1_a19,
     author = {T. V. Pervukhina},
     title = {Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {197--204},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/}
}
TY  - JOUR
AU  - T. V. Pervukhina
TI  - Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 197
EP  - 204
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/
LA  - ru
ID  - TIMM_2015_21_1_a19
ER  - 
%0 Journal Article
%A T. V. Pervukhina
%T Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 197-204
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/
%G ru
%F TIMM_2015_21_1_a19
T. V. Pervukhina. Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 197-204. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/

[1] Almeida J., Finite semigroups and universal algebra, World Scientific, Singapore, 1994, 511 pp. | MR | Zbl

[2] Pin J.-E., Varieties of formal languages, North Oxford Academic Publishers, London, 1986, 148 pp. | MR

[3] Rhodes J., Steinberg B., The q-theory of finite semigroups, Springer, New York, 2009, 666 pp. | MR | Zbl

[4] Schutzenberger M.P., “On finite monoids having only trivial subgroups”, Inf. Control, 8 (1965), 190–194 | DOI | MR | Zbl

[5] Simon I., “Piecewise testable events”, Lect. Notes in Comp. Sci., 33 (1975), 214–222 | DOI | MR | Zbl

[6] Straubing H., “On finite $\mathscr{J}$-trivial monoids”, Semigroup Forum, 19 (1980), 107–110 | DOI | MR | Zbl

[7] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985, 440 pp. | MR

[8] Pervukhina T.V., “Struktura konechnykh monoidov, udovletvoryayuschikh sootnosheniyu $\mathscr{R}=\mathscr{H}$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 181–191

[9] Pervukhina T.V., “O psevdomnogoobrazii, porozhdennom vsemi konechnymi monoidami so svoistvom $\mathscr{R}=\mathscr{H}$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 215–220