Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 197-204
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the pseudovariety generated by all finite monoids on which Green's relations $\mathscr{R}$ and $\mathscr{H}$ coincide. It is shown that any finite monoid $S$ belonging to this pseudovariety divides the monoid of all upper-triangular row-monomial matrices over a finite group with zero adjoined. The proof is constructive; given a monoid $S$, the corresponding group and the order of matrices can be effectively found.
Keywords:
finite monoids; monoid pseudovariety; upper-triangular matrices; Green's relations; $\mathscr{R}$-trivial monoids.
@article{TIMM_2015_21_1_a19,
author = {T. V. Pervukhina},
title = {Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {197--204},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/}
}
TY - JOUR
AU - T. V. Pervukhina
TI - Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$
JO - Trudy Instituta matematiki i mehaniki
PY - 2015
SP - 197
EP - 204
VL - 21
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/
LA - ru
ID - TIMM_2015_21_1_a19
ER -
%0 Journal Article
%A T. V. Pervukhina
%T Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 197-204
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/
%G ru
%F TIMM_2015_21_1_a19
T. V. Pervukhina. Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 197-204. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/