@article{TIMM_2015_21_1_a19,
author = {T. V. Pervukhina},
title = {Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {197--204},
year = {2015},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/}
}
TY - JOUR
AU - T. V. Pervukhina
TI - Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$
JO - Trudy Instituta matematiki i mehaniki
PY - 2015
SP - 197
EP - 204
VL - 21
IS - 1
UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/
LA - ru
ID - TIMM_2015_21_1_a19
ER -
T. V. Pervukhina. Characterization of the pseudovariety generated by finite monoids satisfying $\mathscr{R}=\mathscr{H}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 197-204. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a19/
[1] Almeida J., Finite semigroups and universal algebra, World Scientific, Singapore, 1994, 511 pp. | MR | Zbl
[2] Pin J.-E., Varieties of formal languages, North Oxford Academic Publishers, London, 1986, 148 pp. | MR
[3] Rhodes J., Steinberg B., The q-theory of finite semigroups, Springer, New York, 2009, 666 pp. | MR | Zbl
[4] Schutzenberger M.P., “On finite monoids having only trivial subgroups”, Inf. Control, 8 (1965), 190–194 | DOI | MR | Zbl
[5] Simon I., “Piecewise testable events”, Lect. Notes in Comp. Sci., 33 (1975), 214–222 | DOI | MR | Zbl
[6] Straubing H., “On finite $\mathscr{J}$-trivial monoids”, Semigroup Forum, 19 (1980), 107–110 | DOI | MR | Zbl
[7] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985, 440 pp. | MR
[8] Pervukhina T.V., “Struktura konechnykh monoidov, udovletvoryayuschikh sootnosheniyu $\mathscr{R}=\mathscr{H}$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:4 (2013), 181–191
[9] Pervukhina T.V., “O psevdomnogoobrazii, porozhdennom vsemi konechnymi monoidami so svoistvom $\mathscr{R}=\mathscr{H}$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:1 (2014), 215–220