Finite simple groups that are not spectrum critical
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 172-176

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. The spectrum of $G$ is the set $\omega(G)$ of orders of all its elements. The subset of prime elements of $\omega(G)$ is called prime spectrum and is denoted by $\pi(G)$. A group $G$ is called spectrum critical ( prime spectrum critical) if, for any subgroups $K$ and $L$ of $G$ such that $K$ is a normal subgroup of $L$, the equality $\omega(L/K)=\omega(G)$ ($\pi(L/K)=\pi(G)$, respectively) implies that $L=G$ and $K=1$. In the present paper, we describe all finite simple groups that are not spectrum critical. In addition, we show that a prime spectrum minimal group $G$ is prime spectrum critical if and only if its Fitting subgroup $F(G)$ is a Hall subgroup of $G$.
Keywords: finite group; simple group; spectrum; prime spectrum; spectrum critical group; prime spectrum critical group.
@article{TIMM_2015_21_1_a16,
     author = {N. V. Maslova},
     title = {Finite simple groups that are not spectrum critical},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {172--176},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a16/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - Finite simple groups that are not spectrum critical
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 172
EP  - 176
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a16/
LA  - ru
ID  - TIMM_2015_21_1_a16
ER  - 
%0 Journal Article
%A N. V. Maslova
%T Finite simple groups that are not spectrum critical
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 172-176
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a16/
%G ru
%F TIMM_2015_21_1_a16
N. V. Maslova. Finite simple groups that are not spectrum critical. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 172-176. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a16/