Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 137-152

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonlinear elliptic second-order variational inequalities with degenerate (with respect to the spatial variable) and anisotropic coefficients and $L^1$-data. We study the cases where the set of constraints belongs to a certain anisotropic weighted Sobolev space and a larger function class. In the first case, some new properties of $T$-solutions and shift $T$-solutions of the investigated variational inequalities are established. Moreover, the notion of $W^{1,1}$-regular $T$-solution is introduced, and a theorem of existence and uniqueness of such a solution is proved. In the second case, we introduce the notion of $\mathcal T$-solution of the variational inequalities under consideration and establish conditions of existence and uniqueness of such a solution.
Keywords: nonlinear elliptic variational inequalities; anisotropy; degeneration; $L^1$-data; $T$-solution; $\mathcal T$-solution.
@article{TIMM_2015_21_1_a13,
     author = {A. A. Kovalevsky},
     title = {Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {137--152},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 137
EP  - 152
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/
LA  - ru
ID  - TIMM_2015_21_1_a13
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 137-152
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/
%G ru
%F TIMM_2015_21_1_a13
A. A. Kovalevsky. Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 137-152. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/