Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 137-152
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider nonlinear elliptic second-order variational inequalities with degenerate (with respect to the spatial variable) and anisotropic coefficients and $L^1$-data. We study the cases where the set of constraints belongs to a certain anisotropic weighted Sobolev space and a larger function class. In the first case, some new properties of $T$-solutions and shift $T$-solutions of the investigated variational inequalities are established. Moreover, the notion of $W^{1,1}$-regular $T$-solution is introduced, and a theorem of existence and uniqueness of such a solution is proved. In the second case, we introduce the notion of $\mathcal T$-solution of the variational inequalities under consideration and establish conditions of existence and uniqueness of such a solution.
Keywords:
nonlinear elliptic variational inequalities; anisotropy; degeneration; $L^1$-data; $T$-solution; $\mathcal T$-solution.
@article{TIMM_2015_21_1_a13,
author = {A. A. Kovalevsky},
title = {Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {137--152},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/}
}
TY - JOUR AU - A. A. Kovalevsky TI - Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 137 EP - 152 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/ LA - ru ID - TIMM_2015_21_1_a13 ER -
A. A. Kovalevsky. Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 137-152. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/