Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 137-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider nonlinear elliptic second-order variational inequalities with degenerate (with respect to the spatial variable) and anisotropic coefficients and $L^1$-data. We study the cases where the set of constraints belongs to a certain anisotropic weighted Sobolev space and a larger function class. In the first case, some new properties of $T$-solutions and shift $T$-solutions of the investigated variational inequalities are established. Moreover, the notion of $W^{1,1}$-regular $T$-solution is introduced, and a theorem of existence and uniqueness of such a solution is proved. In the second case, we introduce the notion of $\mathcal T$-solution of the variational inequalities under consideration and establish conditions of existence and uniqueness of such a solution.
Keywords: nonlinear elliptic variational inequalities; anisotropy; degeneration; $L^1$-data; $T$-solution; $\mathcal T$-solution.
@article{TIMM_2015_21_1_a13,
     author = {A. A. Kovalevsky},
     title = {Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {137--152},
     year = {2015},
     volume = {21},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 137
EP  - 152
VL  - 21
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/
LA  - ru
ID  - TIMM_2015_21_1_a13
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 137-152
%V 21
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/
%G ru
%F TIMM_2015_21_1_a13
A. A. Kovalevsky. Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 137-152. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/

[1] Kovalevskii A.A., Gorban Yu.S., “O $T$-resheniyakh vyrozhdayuschikhsya anizotropnykh ellipticheskikh variatsionnykh neravenstv s $L^1$-dannymi”, Izv. RAN. Ser. matematicheskaya, 75:1 (2011), 101–160 | DOI | MR

[2] Boccardo L., Gallouet T., “Problemes unilateraux avec donnees dans $L^1$”, C. R. Acad. Sci. Paris Ser. I Math, 311:10 (1990), 617–619 | MR | Zbl

[3] Boccardo L., Cirmi G.R., “Existence and uniqueness of solution of unilateral problems with $L^1$ data”, J. Convex Anal., 6:1 (1999), 195–206 | MR | Zbl

[4] Oppezzi P., Rossi A.M., “Esistenza di soluzioni per problemi unilateri con dato misura o in $L^1$”, Ric. Mat., 45:2 (1996), 491–513 | MR | Zbl

[5] Oppezzi P., Rossi M., “Unilateral problems with measure data: links and convergence”, Differential Integral Equations, 14:9 (2001), 1051–1076 | MR | Zbl

[6] Leone C., “Existence and uniqueness of solutions for nonlinear obstacle problems with measure data”, Nonlinear Anal. Ser. A: Theory Methods, 43:2 (2001), 199–215 | DOI | MR | Zbl

[7] Brandolini B., Randazzo L., “An existence result for a class of variational inequalities with $L^1$-data”, Ric. Mat., 50:2 (2001), 195–207 | MR | Zbl

[8] Benkirane A., Bennouna J., “Existence and uniqueness of solution of unilateral problems with $L^1$-data in Orlicz spaces”, Ital. J. Pure Appl. Math., 2004, no. 16, 87–102 | MR | Zbl

[9] Aharouch L., Akdim Y., Azroul E., “Quasilinear degenerate elliptic unilateral problems”, Abstr. Appl. Anal., 2005, no. 1, 11–31 | DOI | MR | Zbl

[10] “Atik Y., Rakotoson J.-M. Local $T$-sets and degenerate variational problems. I”, Appl. Math. Lett., 7:4 (1994), 49–53 | DOI | MR | Zbl

[11] Atik Y., “Local $T$-sets and degenerate quasilinear elliptic bilateral problems with an $L^1$-datum”, Nonlinear Anal. Ser. A: Theory Methods, 38:7 (1999), 827–867 | DOI | MR | Zbl

[12] Kovalevsky A.A., Gorban Y.S., “Degenerate anisotropic variational inequalities with $L^1$-data”, C. R. Math. Acad. Sci. Paris, 345:8 (2007), 441–444 | DOI | MR | Zbl

[13] Kovalevskii A.A., Gorban Yu.S., Vyrozhdayuschiesya anizotropnye variatsionnye neravenstva s $L^1$-dannymi, In-t prikladnoi matematiki i mekhaniki NAN Ukrainy, Donetsk, 2007, 92 pp.

[14] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983, 256 pp. | MR

[15] Kovalevsky A.A., “On a sharp condition of limit summability of solutions of nonlinear elliptic equations with $L^1$-right-hand sides”, Ukr. Mat. Bull, 2:4 (2005), 507–545 | MR