@article{TIMM_2015_21_1_a13,
author = {A. A. Kovalevsky},
title = {Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {137--152},
year = {2015},
volume = {21},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/}
}
TY - JOUR AU - A. A. Kovalevsky TI - Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities JO - Trudy Instituta matematiki i mehaniki PY - 2015 SP - 137 EP - 152 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/ LA - ru ID - TIMM_2015_21_1_a13 ER -
A. A. Kovalevsky. Toward the $L^1$-theory of degenerate anisotropic elliptic variational inequalities. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 137-152. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a13/
[1] Kovalevskii A.A., Gorban Yu.S., “O $T$-resheniyakh vyrozhdayuschikhsya anizotropnykh ellipticheskikh variatsionnykh neravenstv s $L^1$-dannymi”, Izv. RAN. Ser. matematicheskaya, 75:1 (2011), 101–160 | DOI | MR
[2] Boccardo L., Gallouet T., “Problemes unilateraux avec donnees dans $L^1$”, C. R. Acad. Sci. Paris Ser. I Math, 311:10 (1990), 617–619 | MR | Zbl
[3] Boccardo L., Cirmi G.R., “Existence and uniqueness of solution of unilateral problems with $L^1$ data”, J. Convex Anal., 6:1 (1999), 195–206 | MR | Zbl
[4] Oppezzi P., Rossi A.M., “Esistenza di soluzioni per problemi unilateri con dato misura o in $L^1$”, Ric. Mat., 45:2 (1996), 491–513 | MR | Zbl
[5] Oppezzi P., Rossi M., “Unilateral problems with measure data: links and convergence”, Differential Integral Equations, 14:9 (2001), 1051–1076 | MR | Zbl
[6] Leone C., “Existence and uniqueness of solutions for nonlinear obstacle problems with measure data”, Nonlinear Anal. Ser. A: Theory Methods, 43:2 (2001), 199–215 | DOI | MR | Zbl
[7] Brandolini B., Randazzo L., “An existence result for a class of variational inequalities with $L^1$-data”, Ric. Mat., 50:2 (2001), 195–207 | MR | Zbl
[8] Benkirane A., Bennouna J., “Existence and uniqueness of solution of unilateral problems with $L^1$-data in Orlicz spaces”, Ital. J. Pure Appl. Math., 2004, no. 16, 87–102 | MR | Zbl
[9] Aharouch L., Akdim Y., Azroul E., “Quasilinear degenerate elliptic unilateral problems”, Abstr. Appl. Anal., 2005, no. 1, 11–31 | DOI | MR | Zbl
[10] “Atik Y., Rakotoson J.-M. Local $T$-sets and degenerate variational problems. I”, Appl. Math. Lett., 7:4 (1994), 49–53 | DOI | MR | Zbl
[11] Atik Y., “Local $T$-sets and degenerate quasilinear elliptic bilateral problems with an $L^1$-datum”, Nonlinear Anal. Ser. A: Theory Methods, 38:7 (1999), 827–867 | DOI | MR | Zbl
[12] Kovalevsky A.A., Gorban Y.S., “Degenerate anisotropic variational inequalities with $L^1$-data”, C. R. Math. Acad. Sci. Paris, 345:8 (2007), 441–444 | DOI | MR | Zbl
[13] Kovalevskii A.A., Gorban Yu.S., Vyrozhdayuschiesya anizotropnye variatsionnye neravenstva s $L^1$-dannymi, In-t prikladnoi matematiki i mekhaniki NAN Ukrainy, Donetsk, 2007, 92 pp.
[14] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983, 256 pp. | MR
[15] Kovalevsky A.A., “On a sharp condition of limit summability of solutions of nonlinear elliptic equations with $L^1$-right-hand sides”, Ukr. Mat. Bull, 2:4 (2005), 507–545 | MR