Stability of equilibrium with respect to a white noise
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 112-121

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of ordinary differential equations with a local asymptotically stable equilibrium is considered. The problem of stability with respect to a persistent perturbation of the white noise type is discussed. The stability with given estimates is proved on a large time interval with a length of the order of the squared reciprocal magnitude of the perturbation. The proof is based on the construction of a barrier function for the Kolmogorov parabolic equation associated with the perturbed dynamical system.
Keywords: dynamical system; random perturbation; stability; parabolic equation; barrier function.
@article{TIMM_2015_21_1_a10,
     author = {L. A. Kalyakin},
     title = {Stability of equilibrium with respect to a white noise},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {112--121},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a10/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Stability of equilibrium with respect to a white noise
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2015
SP  - 112
EP  - 121
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a10/
LA  - ru
ID  - TIMM_2015_21_1_a10
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Stability of equilibrium with respect to a white noise
%J Trudy Instituta matematiki i mehaniki
%D 2015
%P 112-121
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a10/
%G ru
%F TIMM_2015_21_1_a10
L. A. Kalyakin. Stability of equilibrium with respect to a white noise. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 112-121. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a10/