Stability of equilibrium with respect to a white noise
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 112-121
Voir la notice de l'article provenant de la source Math-Net.Ru
A system of ordinary differential equations with a local asymptotically stable equilibrium is considered. The problem of stability with respect to a persistent perturbation of the white noise type is discussed. The stability with given estimates is proved on a large time interval with a length of the order of the squared reciprocal magnitude of the perturbation. The proof is based on the construction of a barrier function for the Kolmogorov parabolic equation associated with the perturbed dynamical system.
Keywords:
dynamical system; random perturbation; stability; parabolic equation; barrier function.
@article{TIMM_2015_21_1_a10,
author = {L. A. Kalyakin},
title = {Stability of equilibrium with respect to a white noise},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {112--121},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a10/}
}
L. A. Kalyakin. Stability of equilibrium with respect to a white noise. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 21 (2015) no. 1, pp. 112-121. http://geodesic.mathdoc.fr/item/TIMM_2015_21_1_a10/