Voir la notice du chapitre de livre
@article{TIMM_2014_20_4_a9,
author = {M. I. Gusev},
title = {On elimination of state constraints in the construction of reachable sets},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {106--115},
year = {2014},
volume = {20},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a9/}
}
M. I. Gusev. On elimination of state constraints in the construction of reachable sets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 4, pp. 106-115. http://geodesic.mathdoc.fr/item/TIMM_2014_20_4_a9/
[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR | Zbl
[2] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR | Zbl
[3] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988, 319 pp. | MR | Zbl
[4] Krasovski N. N., Subbotin A. I., Game-theoretical control problems, Springer-Verlag, New York, 1988, 517 pp. | MR | Zbl
[5] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997, 321 pp. | MR | Zbl
[6] Lotov A. V., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinykh upravlyaemykh sistem s fazovymi ogranicheniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 15:1 (1975), 67–78 | MR | Zbl
[7] Matviichuk A. R., Ushakov V. N., “O postroenii razreshayuschikh upravlenii v zadachakh upravleniya s fazovymi ogranicheniyami”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 1, 5–20 | MR
[8] Kurzhanski A. B., Mitchell I. M., Varaiya P., “Optimization techniques for state-constrained control and obstacle problems”, J. Optim. Theory Appl., 128:3 (2006), 499–521 | DOI | MR | Zbl
[9] Baier R., Chahma I. A., Lempio F., “Stability and convergence of Euler's method for state-constrained differential inclusions”, SIAM J. Optim., 18:3 (2007), 1004–1026 | DOI | MR | Zbl
[10] Bonneuil N., “Computing reachable sets as capture-viability kernels in reverse time”, Appl. Math., 3:11 (2012), 1593–1597 | DOI
[11] Kostousova E. K., “Vneshnee i vnutrennee otsenivanie oblastei dostizhimosti pri pomoschi parallelotopov”, Vychisl. tekhnologii, 3:2 (1998), 11–20 | MR | Zbl
[12] Gusev M. I., “Vneshnie otsenki mnozhestv dostizhimosti nelineinykh upravlyaemykh sistem”, Avtomatika i telemekhanika, 2012, no. 3, 39–51
[13] Kurzhanskii A. B., Filippova T. F., “Ob opisanii mnozhestva vyzhivayuschikh traektorii differentsialnogo vklyucheniya”, Dokl. AN SSSR, 289:1 (1986), 38–41 | MR
[14] Kurzhanskii A. B., Filippova T. F., “Ob opisanii puchka vyzhivayuschikh traektorii upravlyaemoi sistemy”, Differents. uravneniya, 23:8 (1987), 1303–1315 | MR
[15] Gusev M. I., “O metode shtrafnykh funktsii v zadache postroeniya mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 1, 2013, 81–86
[16] Gusev M. I., “Vnutrennie approksimatsii mnozhestv dostizhimosti upravlyaemykh sistem s fazovymi ogranicheniyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 4, 2013, 73–88
[17] Forcellini F., Rampazzo F., “On nonconvex differential inclusions whose state is constrained in the closure of an open set”, Differential Integral Equations, 12:4 (1999), 471–497 | MR | Zbl
[18] Frankowska H., Vinter R. B., “Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems”, J. Optim. Theory Appl., 104:1 (2000), 21–40 | DOI | MR | Zbl
[19] Bettiol P., Bressan A., Vinter R., “Trajectories satisfying a state constraint: $W^{(1,1)}$ estimates and counterexamples”, SIAM J. Control Optim., 48:7 (2010), 4664–4679 | DOI | MR | Zbl
[20] Stern R. J., “Characterization of the state constrained minimal time function”, SIAM J. Control Optim., 43:2 (2004), 697–707 | DOI | MR | Zbl
[21] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl
[22] Sontag E. D., “A “universal” construction of Artstein's theorem on nonlinear stabilization”, System and Control Letters, 13:2 (1989), 117–123 | DOI | MR | Zbl
[23] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR
[24] Gusev M.I., “O zadache dostizhimosti pri fazovykh ogranicheniyakh”, XII Vseros. soveschanie po problemam upravleniya – VSPU-2014, Sb. dokl. (Moskva, 16–19 iyunya, 2014 g.), [Elektron. resurs], 610–621