Deep cuts in concave and linear 0-1 programming
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 294-304

Voir la notice de l'article provenant de la source Math-Net.Ru

A technique for the construction of deep cuts in the global minimization problem for a continuously differentiable concave function on a polytope and in a Boolean programming problem is proposed. The introduced cuts are based constructively on the so-called best concave extension. The theoretical analysis is based on the properties of the image of the target function under the gradient mapping. Illustrative examples and results of a preliminary numerical experiment are presented.
Keywords: cutting plane, concave extension, recessive direction, global minimum.
@article{TIMM_2014_20_2_a25,
     author = {O. V. Khamisov},
     title = {Deep cuts in concave and linear 0-1 programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {294--304},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a25/}
}
TY  - JOUR
AU  - O. V. Khamisov
TI  - Deep cuts in concave and linear 0-1 programming
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 294
EP  - 304
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a25/
LA  - ru
ID  - TIMM_2014_20_2_a25
ER  - 
%0 Journal Article
%A O. V. Khamisov
%T Deep cuts in concave and linear 0-1 programming
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 294-304
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a25/
%G ru
%F TIMM_2014_20_2_a25
O. V. Khamisov. Deep cuts in concave and linear 0-1 programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 294-304. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a25/