Deep cuts in concave and linear 0-1 programming
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 294-304
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A technique for the construction of deep cuts in the global minimization problem for a continuously differentiable concave function on a polytope and in a Boolean programming problem is proposed. The introduced cuts are based constructively on the so-called best concave extension. The theoretical analysis is based on the properties of the image of the target function under the gradient mapping. Illustrative examples and results of a preliminary numerical experiment are presented.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
cutting plane, concave extension, recessive direction, global minimum.
                    
                  
                
                
                @article{TIMM_2014_20_2_a25,
     author = {O. V. Khamisov},
     title = {Deep cuts in concave and linear 0-1 programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {294--304},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a25/}
}
                      
                      
                    O. V. Khamisov. Deep cuts in concave and linear 0-1 programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 294-304. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a25/
