Mots-clés : simple group, $\pi$-decomposable group
@article{TIMM_2014_20_2_a2,
author = {V. A. Belonogov},
title = {Finite groups in which all $2$-maximal subgroups are $\pi$-decomposable},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {29--43},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a2/}
}
V. A. Belonogov. Finite groups in which all $2$-maximal subgroups are $\pi$-decomposable. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 29-43. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a2/
[1] Shmidt O. Yu., “Gruppy, vse podgruppy kotorykh spetsialnye”, Mat. sb., 31:3–4 (1924), 366–372 | Zbl
[2] Janko Z., “Endliche Gruppen mit lauter nilpotenten zweitmaximalen Untergruppen”, Math. Z., 79:5 (1962), 422–424 | DOI | MR | Zbl
[3] Belonogov V. A., “Konechnye razreshimye gruppy s nilpotentnymi 2-maksimalnymi podgruppami”, Mat. zametki, 3:1 (1968), 21–32 | MR | Zbl
[4] Belonogov V. A., “O konechnykh gruppakh, nasyschennykh $(\pi,\pi')$-razlozhimymi podgruppami”, Sib. mat. zhurn., 10:3 (1969), 494–506 | MR | Zbl
[5] Arad Z., Chillag D., “A criterium for the existence of normal $\pi$-complements in finite groups”, J. Algebra, 87:2 (1984), 472–482 | DOI | MR | Zbl
[6] Belonogov V. A., “O kontrole prostogo spektra konechnoi prostoi gruppy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 3, 2013, 29–44
[7] Gorenstein D., Finite groups, Harper Row, N.Y., 1968, 537 pp. | MR | Zbl
[8] Huppert B., Endliche Gruppen, v. I, Springer, Berlin, 1967, 804 pp. | MR | Zbl
[9] Willson R. A., The finite simple groups, Springer-Verlag, L., 2009, 313 pp. | MR
[10] J. H. Conway, R. T. Curtis, S. P. Norten, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985, 285 pp. | MR | Zbl
[11] Chunikhin S. A., “O suschestvovanii podgrupp u konechnoi gruppy”, Tr. seminara po teorii grupp, GONTI NKTP SSSR, M.–L., 1938, 106–125
[12] Belonogov V. A., “Finite groups in which all 2-maximal subgrous are $\pi$-decomposable”, Maltsev Meeting, Novosibirsk, 2013, 116 URL: http://www.math.nsc.ru/conference/malmeet/13/maltsev13.pdf
[13] Norton S. P., Willson R. A., “A correction to the 41-structureof the Monster, a constructions of a new maximal subgroup $L_2(41)$ and new Moonshinephenomenon”, J. London Math. Soc. (2), 87:3 (2013), 943–962 | DOI | MR | Zbl
[14] Belonogov V. A., “O neprivodimom predstavlenii $p$-gruppy nad konechnym polem”, Mat. zapiski Ural. un-ta, 12:3, Issledovaniya po sovremennoi algebre (1981), 3–12 | MR | Zbl
[15] Bray J. N., Holt D. F., Roney-Dougal C. M., The maximal subgroups of the low-dimensional finite classical groups, London Math. Soc. Lect. Note Ser., 407, Cambridge Univ. Press, Cambridge, 2013, 452 pp. | MR | Zbl
[16] King O. H., “The subgroup structure of finite classical groups in terms of geometric configuratios”, Surveys in combinatorics, London Math. Soc. Lecture Note Ser., 327, Cambridge Univ. Press, Cambridge, 2005, 29–56 | MR | Zbl
[17] Belonogov V. A., “Konechnye gruppy s tremya klassami maksimalnykh podgrupp”, Mat. sb., 131(173):2 (1986), 225–239 | MR | Zbl
[18] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Math. Surveys Monogr., 40, Amer. Math. Soc., Providence, 1994, 179 pp. | DOI | MR | Zbl
[19] Guralnick R., “Subgroups of prime power index in a simple group”, J. Algebra, 81:2 (1983), 304–311 | DOI | MR | Zbl
[20] Aschbacher M., “On the maximal subgroups of the finte classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl
[21] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, London Math. Soc. Lecture Note Ser., 129, Cambridge Univ. Press, Cambridge, 1990, 305 pp. | MR | Zbl
[22] Aschbacher M., Finite Groups Theory, Cambridge Univ. Press, Cambridge, 1986, 283 pp. | MR | Zbl
[23] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR | Zbl