@article{TIMM_2014_20_2_a12,
author = {V. G. Zhadan},
title = {On a~variant of a~feasible affine scaling method for semidefinite programming},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {145--160},
year = {2014},
volume = {20},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a12/}
}
V. G. Zhadan. On a variant of a feasible affine scaling method for semidefinite programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 145-160. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a12/
[1] Eremin I. I., Teoriya lineinoi optimizatsii, Izd-vo “Ekaterinburg”, Ekaterinburg, 1999, 312 pp.
[2] H. Wolkowicz, R. Saigal, L. Vandenberghe (eds.), Handbook of Semidefinite Programming, Kluwer Acad. Publ., Dordrecht, 2000, 656 pp. | MR
[3] Babynin M. S., Zhadan V. G., “Pryamoi metod vnutrennei tochki dlya lineinoi zadachi poluopredelennogo programmirovaniya”, Zhurn. vychisl. matematiki i mat. fiziki, 48:10 (2008), 1780–1801 | MR | Zbl
[4] Zhadan V. G., “Pryamoi multiplikativno-barernyi metod s naiskoreishim spuskom dlya lineinoi zadachi poluopredelennogo programmirovaniya”, Optimizatsiya i prilozheniya, 2, VTs RAN, M., 2011, 107–131 | MR
[5] Zhadan V. G., “Konechnye barerno-proektivnye metody dlya lineinogo programmirovaniya”, Metody optimizatsii i ikh prilozheniya, Tr. XI Baikalskoi mezhdunar. shk.-seminara. Plenarnye doklady, Izd-vo SEI SO RAN, Irkutsk, 1998, 140–144
[6] Arnold V. I., “O matritsakh, zavisyaschikh ot parametrov”, Uspekhi mat. nauk, 26:2(158) (1971), 101–114 | MR | Zbl
[7] Alizadeh F., Haeberly J.-P. F., Overton M. L., “Complementarity and nondegeneracy in semidefinite programming”, Math. Programming Ser. B, 77:1 (1997), 111–128 | DOI | MR | Zbl
[8] Magnus J. R., Neudecker H., “The elimination matrix: some lemmas and applications”, SIAM J. Alg. Disc. Methods, 1:4 (1980), 422–449 | DOI | MR | Zbl
[9] Lasserre J. B., “Linear programming with positive semi-definite matreces”, Math. Problems in Engineering, 2:6 (1996), 499–522 | DOI | Zbl