On a~variant of a~feasible affine scaling method for semidefinite programming
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 145-160
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A linear problem of semidefinite programming is considered. For its solution, a primal feasible affine scaling method is proposed, in which the points of the iterative process may belong to the boundary of the feasible set.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
linear semidefinite programming problem, primal affine scaling method, steepest descent.
                    
                  
                
                
                @article{TIMM_2014_20_2_a12,
     author = {V. G. Zhadan},
     title = {On a~variant of a~feasible affine scaling method for semidefinite programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {145--160},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a12/}
}
                      
                      
                    TY - JOUR AU - V. G. Zhadan TI - On a~variant of a~feasible affine scaling method for semidefinite programming JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 145 EP - 160 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a12/ LA - ru ID - TIMM_2014_20_2_a12 ER -
V. G. Zhadan. On a~variant of a~feasible affine scaling method for semidefinite programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 2, pp. 145-160. http://geodesic.mathdoc.fr/item/TIMM_2014_20_2_a12/
