Mots-clés : adaptation of solutions
@article{TIMM_2014_20_1_a9,
author = {E. E. Ivanko},
title = {Adaptive stability in combinatorial optimization problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {100--108},
year = {2014},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a9/}
}
E. E. Ivanko. Adaptive stability in combinatorial optimization problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a9/
[1] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950, 473 pp. | Zbl
[2] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, M., 1959, 211 pp. | MR
[3] Leontev V. K., “Ustoichivost v lineinykh diskretnykh zadachakh”, Problemy kibernetiki, 35, 1979, 169–185 | MR
[4] Gordeev E. N., Leontev V. K., “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zhurn. vychislit. matematiki i mat. fiziki, 36:1 (1996), 66–72 | MR | Zbl
[5] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 2004, no. 2, 79–92 | MR | Zbl
[6] Emelichev V. A., Kuzmin K. G., “Usloviya ustoichivosti mnogokriterialnoi bulevoi zadachi minimizatsii proektsii lineinykh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 2, 2013, 125–133
[7] Emelichev V., Girlich E., Karelkina O., “Postoptimal analysis of multicriteria combinatorial center location problem”, Bul. Acad. Stiinte Repub. Mold. Mat., 2009, no. 3, 13–29 | MR | Zbl
[8] Devyaterikova M. V., Kolokolov A. A., “Ob ustoichivosti nekotorykh algoritmov tselochislennogo programmirovaniya”, Izv. vuzov. Matematika, 2003, no. 12, 41–48 | MR | Zbl
[9] Devyaterikova M. V., Issledovanie ustoichivosti zadach i algoritmov tselochislennogo programmirovaniya na osnove regulyarnykh razbienii, Dis. $\dots$ kand. fiz.-mat. nauk, Omsk, 2001, 97 pp.
[10] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Nauk. dumka, Kiev, 1995, 170 pp.
[11] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii: problemy, metody resheniya, issledovaniya, Nauk. dumka, Kiev, 2003, 264 pp.
[12] Sergienko T. I., “Ob ustoichivosti po ogranicheniyam mnogokriterialnoi zadachi tselochislennogo programmirovaniya”, Doklady AN USSR, 1989, no. 3, 79–81 | MR | Zbl
[13] Libura M., “Optimality conditions and sensitivity analysis for combinatorial optimization problems”, Control and Cybernetics, 25 (1996), 1165–1180 | MR | Zbl
[14] Poort E. S., Aspects of sensitivity analysis for the traveling salesman problem, PhD dissertation, Netherlands, Groningen, 1997, 196 pp.
[15] Ivanko E. E., “Dostatochnye usloviya ustoichivosti optimalnogo marshruta v zadache kommivoyazhera pri dobavlenii novoi vershiny i pri udalenii suschestvuyuschei”, Vestn. Udmurt. gos. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 1, 48–57
[16] Ivanko E. E., “Kriterii ustoichivosti optimalnogo marshruta v zadache kommivoyazhera pri dobavlenii vershiny”, Vestn. Udmurt. gos. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 58–66
[17] Ivanko E. E., “Dostatochnye usloviya ustoichivosti v zadache kommivoyazhera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 155–168
[18] Ivanko E. E., “Kriterii ustoichivosti optimalnykh reshenii minimaksnoi zadachi o razbienii na proizvolnoe chislo podmnozhestv pri izmenenii moschnosti iskhodnogo mnozhestva”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 180–194
[19] Ivanko E. E., “Ustoichivost optimalnykh marshurtov v zadache kommivoyazhera pri dobavlenii i udalenii vershin”, Diskretnaya optimizatsiya i issledovanie operatsii, Materialy Vseross. konf. “DOOR-2010”, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2010, 105
[20] Ivanko E. E., Grigorev A. M., “Oblasti neustoichivosti optimalnykh marshrutov v zadache kommivoyazhera pri dobavlenii novoi vershiny”, Algoritmicheskii analiz neustoichivykh zadach, Tez. dokl. Mezhdunar. konf., In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2011, 232–233
[21] Ivanko E. E., “Ustoichivost v zadache kombinatornoi optimizatsii kak polinomialnaya “adaptiruemost” optimalnykh reshenii pri vozmuschenii mnozhestva nachalnykh dannykh”, Diskretnaya optimizatsiya i issledovanie operatsii, Materialy Mezhdunar. konf. “DOOR-2013”, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2013, 117
[22] Ivanko E. E., Ustoichivost i neustoichivost v diskretnykh zadachakh, Izd-vo RIO UrO RAN, Ekaterinburg, 2013, 207 pp.