Adaptive stability in combinatorial optimization problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 100-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a general approach to the construction of necessary, sufficient, and necessary and sufficient conditions that allow to “adapt” a known optimal solution of an abstract combinatorial problem with a certain structure to a change in the initial data set for a fixed cost function “easily” from the combinatorial point of view. We call this approach adaptive stability. Apparently, it is the first time that the approach is described for an abstract problem in a rigorous mathematical formalization.
Keywords: stability, combinatorial optimization problem, disturbance of the initial data set.
Mots-clés : adaptation of solutions
@article{TIMM_2014_20_1_a9,
     author = {E. E. Ivanko},
     title = {Adaptive stability in combinatorial optimization problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {100--108},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a9/}
}
TY  - JOUR
AU  - E. E. Ivanko
TI  - Adaptive stability in combinatorial optimization problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 100
EP  - 108
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a9/
LA  - ru
ID  - TIMM_2014_20_1_a9
ER  - 
%0 Journal Article
%A E. E. Ivanko
%T Adaptive stability in combinatorial optimization problems
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 100-108
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a9/
%G ru
%F TIMM_2014_20_1_a9
E. E. Ivanko. Adaptive stability in combinatorial optimization problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 100-108. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a9/

[1] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950, 473 pp. | Zbl

[2] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, M., 1959, 211 pp. | MR

[3] Leontev V. K., “Ustoichivost v lineinykh diskretnykh zadachakh”, Problemy kibernetiki, 35, 1979, 169–185 | MR

[4] Gordeev E. N., Leontev V. K., “Obschii podkhod k issledovaniyu ustoichivosti reshenii v zadachakh diskretnoi optimizatsii”, Zhurn. vychislit. matematiki i mat. fiziki, 36:1 (1996), 66–72 | MR | Zbl

[5] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 2004, no. 2, 79–92 | MR | Zbl

[6] Emelichev V. A., Kuzmin K. G., “Usloviya ustoichivosti mnogokriterialnoi bulevoi zadachi minimizatsii proektsii lineinykh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19, no. 2, 2013, 125–133

[7] Emelichev V., Girlich E., Karelkina O., “Postoptimal analysis of multicriteria combinatorial center location problem”, Bul. Acad. Stiinte Repub. Mold. Mat., 2009, no. 3, 13–29 | MR | Zbl

[8] Devyaterikova M. V., Kolokolov A. A., “Ob ustoichivosti nekotorykh algoritmov tselochislennogo programmirovaniya”, Izv. vuzov. Matematika, 2003, no. 12, 41–48 | MR | Zbl

[9] Devyaterikova M. V., Issledovanie ustoichivosti zadach i algoritmov tselochislennogo programmirovaniya na osnove regulyarnykh razbienii, Dis. $\dots$ kand. fiz.-mat. nauk, Omsk, 2001, 97 pp.

[10] Sergienko I. V., Kozeratskaya L. N., Lebedeva T. T., Issledovanie ustoichivosti i parametricheskii analiz diskretnykh optimizatsionnykh zadach, Nauk. dumka, Kiev, 1995, 170 pp.

[11] Sergienko I. V., Shilo V. P., Zadachi diskretnoi optimizatsii: problemy, metody resheniya, issledovaniya, Nauk. dumka, Kiev, 2003, 264 pp.

[12] Sergienko T. I., “Ob ustoichivosti po ogranicheniyam mnogokriterialnoi zadachi tselochislennogo programmirovaniya”, Doklady AN USSR, 1989, no. 3, 79–81 | MR | Zbl

[13] Libura M., “Optimality conditions and sensitivity analysis for combinatorial optimization problems”, Control and Cybernetics, 25 (1996), 1165–1180 | MR | Zbl

[14] Poort E. S., Aspects of sensitivity analysis for the traveling salesman problem, PhD dissertation, Netherlands, Groningen, 1997, 196 pp.

[15] Ivanko E. E., “Dostatochnye usloviya ustoichivosti optimalnogo marshruta v zadache kommivoyazhera pri dobavlenii novoi vershiny i pri udalenii suschestvuyuschei”, Vestn. Udmurt. gos. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 1, 48–57

[16] Ivanko E. E., “Kriterii ustoichivosti optimalnogo marshruta v zadache kommivoyazhera pri dobavlenii vershiny”, Vestn. Udmurt. gos. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 1, 58–66

[17] Ivanko E. E., “Dostatochnye usloviya ustoichivosti v zadache kommivoyazhera”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 155–168

[18] Ivanko E. E., “Kriterii ustoichivosti optimalnykh reshenii minimaksnoi zadachi o razbienii na proizvolnoe chislo podmnozhestv pri izmenenii moschnosti iskhodnogo mnozhestva”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 180–194

[19] Ivanko E. E., “Ustoichivost optimalnykh marshurtov v zadache kommivoyazhera pri dobavlenii i udalenii vershin”, Diskretnaya optimizatsiya i issledovanie operatsii, Materialy Vseross. konf. “DOOR-2010”, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2010, 105

[20] Ivanko E. E., Grigorev A. M., “Oblasti neustoichivosti optimalnykh marshrutov v zadache kommivoyazhera pri dobavlenii novoi vershiny”, Algoritmicheskii analiz neustoichivykh zadach, Tez. dokl. Mezhdunar. konf., In-t matematiki i mekhaniki UrO RAN, Ekaterinburg, 2011, 232–233

[21] Ivanko E. E., “Ustoichivost v zadache kombinatornoi optimizatsii kak polinomialnaya “adaptiruemost” optimalnykh reshenii pri vozmuschenii mnozhestva nachalnykh dannykh”, Diskretnaya optimizatsiya i issledovanie operatsii, Materialy Mezhdunar. konf. “DOOR-2013”, Izd-vo In-ta matematiki SO RAN, Novosibirsk, 2013, 117

[22] Ivanko E. E., Ustoichivost i neustoichivost v diskretnykh zadachakh, Izd-vo RIO UrO RAN, Ekaterinburg, 2013, 207 pp.