The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 130-141

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that the problem has a unique solution, which is a polynomial of degree $27$. This polynomial is a linear combination of Legendre polynomials of degrees $0,1,2,3,4,5,8,9,10,20,27$ with positive coefficients; it has simple root $1/2$ and five roots of multiplicity $2$ in $(-1,1/2)$. Also we consider dual problem for nonnegative measures on $[-1,1/2]$. We prove that extremal measure is unique.
Keywords: Delsarte method, infinite-dimensional linear programming, kissing numbers.
Mots-clés : Legendre polynomials
@article{TIMM_2014_20_1_a12,
     author = {N. A. Kuklin},
     title = {The extremal function in the {Delsarte} problem of finding an upper bound for the kissing number in the three-dimensional space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {130--141},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/}
}
TY  - JOUR
AU  - N. A. Kuklin
TI  - The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 130
EP  - 141
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/
LA  - ru
ID  - TIMM_2014_20_1_a12
ER  - 
%0 Journal Article
%A N. A. Kuklin
%T The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 130-141
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/
%G ru
%F TIMM_2014_20_1_a12
N. A. Kuklin. The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 130-141. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/