The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 130-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that the problem has a unique solution, which is a polynomial of degree $27$. This polynomial is a linear combination of Legendre polynomials of degrees $0,1,2,3,4,5,8,9,10,20,27$ with positive coefficients; it has simple root $1/2$ and five roots of multiplicity $2$ in $(-1,1/2)$. Also we consider dual problem for nonnegative measures on $[-1,1/2]$. We prove that extremal measure is unique.
Keywords: Delsarte method, infinite-dimensional linear programming, kissing numbers.
Mots-clés : Legendre polynomials
@article{TIMM_2014_20_1_a12,
     author = {N. A. Kuklin},
     title = {The extremal function in the {Delsarte} problem of finding an upper bound for the kissing number in the three-dimensional space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {130--141},
     year = {2014},
     volume = {20},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/}
}
TY  - JOUR
AU  - N. A. Kuklin
TI  - The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2014
SP  - 130
EP  - 141
VL  - 20
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/
LA  - ru
ID  - TIMM_2014_20_1_a12
ER  - 
%0 Journal Article
%A N. A. Kuklin
%T The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
%J Trudy Instituta matematiki i mehaniki
%D 2014
%P 130-141
%V 20
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/
%G ru
%F TIMM_2014_20_1_a12
N. A. Kuklin. The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 130-141. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/

[1] Alefeld G., Khertsberger Yu., Vvedenie v intervalnye vychisleniya, Mir, M., 1987, 356 pp. | MR

[2] Arestov V. V., Babenko A. G., “O skheme Delsarta otsenki kontaktnykh chisel”, Tr. MIAN, 219, 1997, 44–73 | MR | Zbl

[3] Arestov V. V., Babenko A. G., “Otsenki maksimalnogo znacheniya uglovogo kodovogo rasstoyaniya dlya 24 i 25 tochek na edinichnoi sfere v $\mathbb R^4$”, Mat. zametki, 68:4 (2000), 483–503 | DOI | MR | Zbl

[4] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 896 pp.

[5] Delsart F., Algebraicheskii podkhod k skhemam otnoshenii teorii kodirovaniya, Mir, M., 1976, 136 pp. | MR

[6] Kabatyanskii G. A., Levenshtein V. I., “O granitsakh dlya upakovok na sfere i v prostranstve”, Problemy peredachi informatsii, 14:1 (1978), 3–25 | MR | Zbl

[7] Kuklin N. A., “Vid ekstremalnoi funktsii v zadache Delsarta otsenki sverkhu kontaktnogo chisla trekhmernogo prostranstva”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 225–232

[8] Kuklin N. A., “Metod Delsarta v zadache o kontaktnykh chislakh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 224–239

[9] Levenshtein V. I., “Granitsy dlya upakovok metricheskikh prostranstv i nekotorye ikh prilozheniya”, Problemy kibernetiki, 40, 1983, 44–110

[10] Levenshtein V. I., “O granitsakh dlya upakovok v $n$-mernom evklidovom prostranstve”, Dokl. AN SSS, 245:6 (1979), 1299–1303 | MR | Zbl

[11] Musin O. R., “Problema dvadtsati pyati sfer”, Uspekhi mat. nauk, 58:4(352) (2003), 153–154 | DOI | MR | Zbl

[12] Prasolov V. V., Mnogochleny, 3-e izd., ispr., MTsNMO, M., 2003, 336 pp.

[13] Sidelnikov V. M., “Ob ekstremalnykh mnogochlenakh, ispolzuemykh pri otsenkakh moschnosti koda”, Problemy peredachi informatsii, 16:3 (1980), 17–30 | MR | Zbl

[14] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, 3-e izd., pererab. i dop., Fizmatlit, M., 2005, 480 pp. | MR

[15] Khinchin A. Ya., Tsepnye drobi, 2-e izd., Gos. izd-vo tekhn.-teoret. literatury, M.–L., 1949, 112 pp. | MR

[16] Shtrom D. V., “Metod Delsarta v zadache o kontaktnykh chislakh evklidovykh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 2, 2002, 162–189 | MR

[17] Delsarte Ph., “Bounds for unrestricted codes, by linear programming”, Philips Res. Rep., 27 (1972), 272–289 | MR | Zbl

[18] Nakata M., “A numerical evaluation of highly accurate multiple-precision arithmetic version of semidefinite programming solver: SDPA-GMP, -QD and -DD”, Proc. of 2010 IEEE Multi-Conference on Systems and Control, 2010, 29–34

[19] Musin O. R., “The kissing problem in three dimensions”, Discrete Comput. Geom., 35:3 (2006), 375–384 | DOI | MR | Zbl

[20] Musin O. R., “The kissing number in four dimensions”, Ann. of Math., 168:1 (2008), 1–32 | DOI | MR | Zbl

[21] Odlyzko A. M., Sloane N. J. A., “New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions”, J. Comb. Theory Ser. A, 26:2 (1979), 210–214 | DOI | MR | Zbl