The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 130-141
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that the problem has a unique solution, which is a polynomial of degree $27$. This polynomial is a linear combination of Legendre polynomials of degrees $0,1,2,3,4,5,8,9,10,20,27$ with positive coefficients; it has simple root $1/2$ and five roots of multiplicity $2$ in $(-1,1/2)$. Also we consider dual problem for nonnegative measures on $[-1,1/2]$. We prove that extremal measure is unique.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Delsarte method, infinite-dimensional linear programming, kissing numbers.
Mots-clés : Legendre polynomials
                    
                  
                
                
                Mots-clés : Legendre polynomials
@article{TIMM_2014_20_1_a12,
     author = {N. A. Kuklin},
     title = {The extremal function in the {Delsarte} problem of finding an upper bound for the kissing number in the three-dimensional space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {130--141},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/}
}
                      
                      
                    TY - JOUR AU - N. A. Kuklin TI - The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space JO - Trudy Instituta matematiki i mehaniki PY - 2014 SP - 130 EP - 141 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/ LA - ru ID - TIMM_2014_20_1_a12 ER -
%0 Journal Article %A N. A. Kuklin %T The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space %J Trudy Instituta matematiki i mehaniki %D 2014 %P 130-141 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/ %G ru %F TIMM_2014_20_1_a12
N. A. Kuklin. The extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 20 (2014) no. 1, pp. 130-141. http://geodesic.mathdoc.fr/item/TIMM_2014_20_1_a12/
