Optimal exploitation of two competing size-structured populations
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 89-94
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a model describing the dynamics of two competing size-structured populations under chosen intensities of their exploitation, the existence and uniqueness of a stationary solution is proved. It is shown that there exist exploitation intensities that maximize a given profit functional on the stationary solution corresponding to them.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
size-structured population, stationary solution.
Mots-clés : optimal exploitation
                    
                  
                
                
                Mots-clés : optimal exploitation
@article{TIMM_2013_19_4_a8,
     author = {A. A. Davydov and A. S. Platov},
     title = {Optimal exploitation of two competing size-structured populations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a8/}
}
                      
                      
                    TY - JOUR AU - A. A. Davydov AU - A. S. Platov TI - Optimal exploitation of two competing size-structured populations JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 89 EP - 94 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a8/ LA - ru ID - TIMM_2013_19_4_a8 ER -
A. A. Davydov; A. S. Platov. Optimal exploitation of two competing size-structured populations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 89-94. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a8/
