Some solutions of continuum equations for an incompressible viscous fluid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 48-63

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Navier–Stokes equations for an incompressible fluid that at any specific instant $t\ge 0$ fills an open axially symmetric cylindric layer $D$. We find solutions of these equations in the class of motions described by velocity fields whose lines for $t\ge 0$ coincide with their vortex lines and lie on axially symmetric cylindric surfaces in $D$.
Keywords: scalar fields; vector fields; tensor fields; curl; Navier-Stokes equation; Stokes equation.
@article{TIMM_2013_19_4_a5,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {Some solutions of continuum equations for an incompressible viscous fluid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {48--63},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - Some solutions of continuum equations for an incompressible viscous fluid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 48
EP  - 63
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/
LA  - ru
ID  - TIMM_2013_19_4_a5
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T Some solutions of continuum equations for an incompressible viscous fluid
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 48-63
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/
%G ru
%F TIMM_2013_19_4_a5
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. Some solutions of continuum equations for an incompressible viscous fluid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 48-63. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/