Some solutions of continuum equations for an incompressible viscous fluid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 48-63
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Navier–Stokes equations for an incompressible fluid that at any specific instant $t\ge 0$ fills an open axially symmetric cylindric layer $D$. We find solutions of these equations in the class of motions described by velocity fields whose lines for $t\ge 0$ coincide with their vortex lines and lie on axially symmetric cylindric surfaces in $D$.
Keywords: scalar fields; vector fields; tensor fields; curl; Navier-Stokes equation; Stokes equation.
@article{TIMM_2013_19_4_a5,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {Some solutions of continuum equations for an incompressible viscous fluid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {48--63},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/}
}
TY  - JOUR
AU  - V. P. Vereshchagin
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - Some solutions of continuum equations for an incompressible viscous fluid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 48
EP  - 63
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/
LA  - ru
ID  - TIMM_2013_19_4_a5
ER  - 
%0 Journal Article
%A V. P. Vereshchagin
%A Yu. N. Subbotin
%A N. I. Chernykh
%T Some solutions of continuum equations for an incompressible viscous fluid
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 48-63
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/
%G ru
%F TIMM_2013_19_4_a5
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. Some solutions of continuum equations for an incompressible viscous fluid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 48-63. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/

[1] Vereschagin V. P., Subbotin Yu. N., Chernykh N. I., “Preobrazovanie, izmenyayuschee geometricheskoe stroenie vektornogo polya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 1, 2009, 111–121

[2] Gromeka I. S., Nekotorye sluchai dvizheniya neszhimaemoi zhidkosti, dis. ... d-ra fiz.-mat. nauk, Kazan, 1881, 107 pp.; Громека И. С., Собр. соч., Изд-во АН СССР, М., 1952, 296 с. | MR

[3] Vereschagin V. P., Subbotin Yu. N., Chernykh N. I., “K mekhanike vintovykh potokov v idealnoi neszhimaemoi nevyazkoi sploshnoi srede”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 120–134

[4] Korn G., Korn T., Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov), Nauka, M., 1977, 832 pp.

[5] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1958, 678 pp.