Some solutions of continuum equations for an incompressible viscous fluid
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 48-63
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the Navier–Stokes equations for an incompressible fluid that at any specific instant $t\ge 0$ fills an open axially symmetric cylindric layer $D$. We find solutions of these equations in the class of motions described by velocity fields whose lines for $t\ge 0$ coincide with their vortex lines and lie on axially symmetric cylindric surfaces in $D$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
scalar fields; vector fields; tensor fields; curl; Navier-Stokes equation; Stokes equation.
                    
                  
                
                
                @article{TIMM_2013_19_4_a5,
     author = {V. P. Vereshchagin and Yu. N. Subbotin and N. I. Chernykh},
     title = {Some solutions of continuum equations for an incompressible viscous fluid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {48--63},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/}
}
                      
                      
                    TY - JOUR AU - V. P. Vereshchagin AU - Yu. N. Subbotin AU - N. I. Chernykh TI - Some solutions of continuum equations for an incompressible viscous fluid JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 48 EP - 63 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/ LA - ru ID - TIMM_2013_19_4_a5 ER -
%0 Journal Article %A V. P. Vereshchagin %A Yu. N. Subbotin %A N. I. Chernykh %T Some solutions of continuum equations for an incompressible viscous fluid %J Trudy Instituta matematiki i mehaniki %D 2013 %P 48-63 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/ %G ru %F TIMM_2013_19_4_a5
V. P. Vereshchagin; Yu. N. Subbotin; N. I. Chernykh. Some solutions of continuum equations for an incompressible viscous fluid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 48-63. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a5/
