One model of size-structured population dynamics
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 175-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear model of size-structured population dynamics is considered. It is described by a linear partial differential equation, namely, by the transport equation. A solution in a constructive form is built for this model under a nonlinear global boundary condition, which has a biological meaning. The model is of interest for biological applications, in particular, in forestry. The results make it possible, for example, to study the qualitative behavior of solutions of the formulated nonstandard boundary value problem with a global boundary condition.
Mots-clés : transport equation
Keywords: integral equation of Volterra type, method of successive approximations.
@article{TIMM_2013_19_4_a17,
     author = {M. S. Nikol'skii},
     title = {One model of size-structured population dynamics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {175--180},
     year = {2013},
     volume = {19},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a17/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
TI  - One model of size-structured population dynamics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 175
EP  - 180
VL  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a17/
LA  - ru
ID  - TIMM_2013_19_4_a17
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%T One model of size-structured population dynamics
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 175-180
%V 19
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a17/
%G ru
%F TIMM_2013_19_4_a17
M. S. Nikol'skii. One model of size-structured population dynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 175-180. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a17/

[1] Hritonenko N., Yatsenko Yu., Goetz R., Xabadia A., “A bang-bang regime in optimal harvesting of size-structured populations”, Nonlinear Anal., 71 (2009), 2331–2336 | MR

[2] Xabadia A., Goetz R., “The optimal selective logging regime and the Faustman formula”, J. Forest Economy, 16 (2010), 63–82 | DOI

[3] Davydov A. A., Platov A. S., “Optimization of stationary solution of a model of size-structured population exploitation”, J. Math. Sci., 176:6 (2011), 860–869 | DOI | MR

[4] Rovenskaya E. A., Grunichev P. V., “Zadacha garmonizatsii ekonomicheskoi pribyli i ekologicheskogo uscherba ot vyrubki lesa v statsionarnom sluchae”, cb. tr. fak. VMK MGU im. M. V. Lomonosova, Problemy dinamicheskogo upravleniya, 6, 2012, 68–77 | Zbl

[5] Nikolskii M. S., “Izuchenie nekotorykh dinamicheskikh modelei populyatsii, strukturirovannykh po razmeram”, cb. tr. fak. VMK MGU im. M. V. Lomonosova, Problemy dinamicheskogo upravleniya, 6, 2012, 122–127

[6] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1980, 352 pp.

[7] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1970, 332 pp.

[8] Polyanin A. D., Zaitsev V. F., Moussiaux A., Handbook of first order partial differential equations, Differential and Integral Equations and Their Applications, Taylor and Francis, London, 2002, 500 pp. | MR | Zbl