Keywords: integral equation of Volterra type, method of successive approximations.
@article{TIMM_2013_19_4_a17,
author = {M. S. Nikol'skii},
title = {One model of size-structured population dynamics},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {175--180},
year = {2013},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a17/}
}
M. S. Nikol'skii. One model of size-structured population dynamics. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 4, pp. 175-180. http://geodesic.mathdoc.fr/item/TIMM_2013_19_4_a17/
[1] Hritonenko N., Yatsenko Yu., Goetz R., Xabadia A., “A bang-bang regime in optimal harvesting of size-structured populations”, Nonlinear Anal., 71 (2009), 2331–2336 | MR
[2] Xabadia A., Goetz R., “The optimal selective logging regime and the Faustman formula”, J. Forest Economy, 16 (2010), 63–82 | DOI
[3] Davydov A. A., Platov A. S., “Optimization of stationary solution of a model of size-structured population exploitation”, J. Math. Sci., 176:6 (2011), 860–869 | DOI | MR
[4] Rovenskaya E. A., Grunichev P. V., “Zadacha garmonizatsii ekonomicheskoi pribyli i ekologicheskogo uscherba ot vyrubki lesa v statsionarnom sluchae”, cb. tr. fak. VMK MGU im. M. V. Lomonosova, Problemy dinamicheskogo upravleniya, 6, 2012, 68–77 | Zbl
[5] Nikolskii M. S., “Izuchenie nekotorykh dinamicheskikh modelei populyatsii, strukturirovannykh po razmeram”, cb. tr. fak. VMK MGU im. M. V. Lomonosova, Problemy dinamicheskogo upravleniya, 6, 2012, 122–127
[6] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1980, 352 pp.
[7] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1970, 332 pp.
[8] Polyanin A. D., Zaitsev V. F., Moussiaux A., Handbook of first order partial differential equations, Differential and Integral Equations and Their Applications, Taylor and Francis, London, 2002, 500 pp. | MR | Zbl