On finite factorizable groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 261-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A classification of finite simple groups factorizable by a $\pi$-solvable subgroup and a $\pi$-subgroup, where $2\not\in\pi$, is obtained.
Keywords: finite simple group, factorization.
Mots-clés : $\pi$-solvable group
@article{TIMM_2013_19_3_a26,
     author = {E. M. Pal'chik},
     title = {On finite factorizable groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {261--267},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a26/}
}
TY  - JOUR
AU  - E. M. Pal'chik
TI  - On finite factorizable groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 261
EP  - 267
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a26/
LA  - ru
ID  - TIMM_2013_19_3_a26
ER  - 
%0 Journal Article
%A E. M. Pal'chik
%T On finite factorizable groups
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 261-267
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a26/
%G ru
%F TIMM_2013_19_3_a26
E. M. Pal'chik. On finite factorizable groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 261-267. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a26/

[1] Huppert B., Endliche Gruppen, v. I, Springer, Berlin, 1967, 793 pp. | MR | Zbl

[2] Gorenstein D., Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1982, 352 pp. | MR

[3] Liebeck M. W., Praeger C. E., Saxl J., The maximal factorizations of the finite simple groups and their automorphism groups, Mem. Amer. Math. Soc., 86, no. 432, Amer. Math. Soc., Providence, 1990, 151 pp. | MR

[4] Kazarin L. S., Martines-Pastor A., Perez-Ramos M. D., “On the product of two $\pi$-decomposable soluble groups”, Publ. Math., 53:2 (2009), 439–456 | MR | Zbl

[5] Palchik E. M., “On finite factorizable groups”, XI Belorus. mat. konf., Tez. dokl., Ch. 5, Minsk, 2012, 67

[6] Chunikhin S. A., Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964, 154 pp. | MR | Zbl

[7] Revin D. O., Khollovy podgruppy konechnykh grupp, Dis. $\dots$ d-ra fiz.-mat. nauk: 01.01.06, Novosibirsk, 2008, 232 pp.

[8] Kondratev A. S., Mazurov V. D., “2-signalizatory konechnykh prostykh grupp”, Algebra i logika, 42:5 (2003), 594–623 | MR | Zbl

[9] Kleidman P., “A proof of the Kegel-Wielandt conjecture on subnormal subgroups”, Ann. Math. (2), 133:2 (1991), 369–428 | DOI | MR | Zbl

[10] Curtis C. W., Kantor W. M., Seitz G. M., “The 2-transitive permutation representations of the finite Chevalley groups”, Trans. Amer. Math. Soc., 218 (1976), 1–59 | MR | Zbl

[11] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Math. Surveys and Monographs, 40, no. 3, Providence, 1998, 419 pp. | MR | Zbl

[12] Revin D. O., “Khollovy $\pi$-podgruppy konechnykh grupp Shevalle, kharakteristika kotorykh prinadlezhit $\pi$”, Mat. tr., 2:1 (1999), 160–208 | MR | Zbl

[13] Blaum M., “Factorisations of the simple groups $PSL(3,q)$ and $PSU(3,q^2)$”, Arch. Math., 40:1 (1983), 8–13 | DOI | MR | Zbl

[14] Revin D. O., “Svoistvo $D_\pi$ v odnom klasse konechnykh grupp”, Algebra i logika, 41:3 (2002), 335–370 | MR | Zbl

[15] Thompson J. G., “Hall subgroups of the symmetric groups”, J. Comb. Theory, 1 (1966), 271–279 | DOI | MR | Zbl

[16] Gross F., “Hall subgroups of order not divisible by 3”, Rocky Mountain J. Math., 23:2 (1993), 569–591 | DOI | MR | Zbl

[17] Vdovin E. P., Revin D. O., “Teoremy silovskogo tipa”, Uspekhi mat. nauk, 66:5(401) (2011), 3–46 | DOI | MR | Zbl

[18] Arad Z., Fisman E., “On finite factorizable groups”, J. Algebra, 96:2 (1984), 522–548 | DOI | MR