On periodic groups acting freely on abelian groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 136-143
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\pi$ be some set of primes. A periodic group $G$ is called a $\pi$-group if all prime divisors of the order of each of its elements lie in $\pi$. An action of $G$ on a nontrivial group $V$ is called free if, for any $v\in V$ and $g\in G$ such that $vg=v$, either $v=1$ or $g=1$. We describe $\{2,3\}$-groups that can act freely on an abelian group.
Keywords: periodic group, abelian group, free action, local finiteness.
@article{TIMM_2013_19_3_a12,
     author = {A. Kh. Zhurtov and D. V. Lytkina and V. D. Mazurov and A. I. Sozutov},
     title = {On periodic groups acting freely on abelian groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {136--143},
     year = {2013},
     volume = {19},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/}
}
TY  - JOUR
AU  - A. Kh. Zhurtov
AU  - D. V. Lytkina
AU  - V. D. Mazurov
AU  - A. I. Sozutov
TI  - On periodic groups acting freely on abelian groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 136
EP  - 143
VL  - 19
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/
LA  - ru
ID  - TIMM_2013_19_3_a12
ER  - 
%0 Journal Article
%A A. Kh. Zhurtov
%A D. V. Lytkina
%A V. D. Mazurov
%A A. I. Sozutov
%T On periodic groups acting freely on abelian groups
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 136-143
%V 19
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/
%G ru
%F TIMM_2013_19_3_a12
A. Kh. Zhurtov; D. V. Lytkina; V. D. Mazurov; A. I. Sozutov. On periodic groups acting freely on abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 136-143. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/

[1] Jabara E., Mayr P., “Frobenius complements of exponent dividing $2^m\cdot9$”, Forum Mathematicum, 21:1 (2009), 217–220 | MR | Zbl

[2] Lytkina D. V., “O periodicheskikh gruppakh, deistvuyuschikh svobodno na abelevykh gruppakh”, Algebra i logika, 49:3 (2010), 379–387 | MR | Zbl

[3] Shunkov V. P., “Ob odnom klasse $p$-grupp”, Algebra i logika, 9:4 (1970), 484–496 | MR | Zbl

[4] Busarkin V. M., Gorchakov Yu. M., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968, 112 pp. | MR

[5] Sozutov A. I., “O stroenii neinvariantnogo mnozhitelya v nekotorykh gruppakh Frobeniusa”, Sib. mat. zhurn., 35:4 (1994), 893–901 | MR | Zbl

[6] Zhurtov A. Kh., Mazurov V. D., “O gruppakh Frobeniusa, porozhdennykh kvadratichnymi elementami”, Algebra i logika, 42:3 (2003), 271–292 | MR | Zbl

[7] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975, 335 pp. | MR | Zbl

[8] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989, 446 pp. | MR

[9] Kholl M., Teoriya grupp, IL, M., 1962, 468 pp.