Voir la notice du chapitre de livre
@article{TIMM_2013_19_3_a12,
author = {A. Kh. Zhurtov and D. V. Lytkina and V. D. Mazurov and A. I. Sozutov},
title = {On periodic groups acting freely on abelian groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {136--143},
year = {2013},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/}
}
TY - JOUR AU - A. Kh. Zhurtov AU - D. V. Lytkina AU - V. D. Mazurov AU - A. I. Sozutov TI - On periodic groups acting freely on abelian groups JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 136 EP - 143 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/ LA - ru ID - TIMM_2013_19_3_a12 ER -
A. Kh. Zhurtov; D. V. Lytkina; V. D. Mazurov; A. I. Sozutov. On periodic groups acting freely on abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 136-143. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/
[1] Jabara E., Mayr P., “Frobenius complements of exponent dividing $2^m\cdot9$”, Forum Mathematicum, 21:1 (2009), 217–220 | MR | Zbl
[2] Lytkina D. V., “O periodicheskikh gruppakh, deistvuyuschikh svobodno na abelevykh gruppakh”, Algebra i logika, 49:3 (2010), 379–387 | MR | Zbl
[3] Shunkov V. P., “Ob odnom klasse $p$-grupp”, Algebra i logika, 9:4 (1970), 484–496 | MR | Zbl
[4] Busarkin V. M., Gorchakov Yu. M., Konechnye rasscheplyaemye gruppy, Nauka, M., 1968, 112 pp. | MR
[5] Sozutov A. I., “O stroenii neinvariantnogo mnozhitelya v nekotorykh gruppakh Frobeniusa”, Sib. mat. zhurn., 35:4 (1994), 893–901 | MR | Zbl
[6] Zhurtov A. Kh., Mazurov V. D., “O gruppakh Frobeniusa, porozhdennykh kvadratichnymi elementami”, Algebra i logika, 42:3 (2003), 271–292 | MR | Zbl
[7] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975, 335 pp. | MR | Zbl
[8] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989, 446 pp. | MR
[9] Kholl M., Teoriya grupp, IL, M., 1962, 468 pp.