On periodic groups acting freely on abelian groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 136-143

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be some set of primes. A periodic group $G$ is called a $\pi$-group if all prime divisors of the order of each of its elements lie in $\pi$. An action of $G$ on a nontrivial group $V$ is called free if, for any $v\in V$ and $g\in G$ such that $vg=v$, either $v=1$ or $g=1$. We describe $\{2,3\}$-groups that can act freely on an abelian group.
Keywords: periodic group, abelian group, free action, local finiteness.
@article{TIMM_2013_19_3_a12,
     author = {A. Kh. Zhurtov and D. V. Lytkina and V. D. Mazurov and A. I. Sozutov},
     title = {On periodic groups acting freely on abelian groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {136--143},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/}
}
TY  - JOUR
AU  - A. Kh. Zhurtov
AU  - D. V. Lytkina
AU  - V. D. Mazurov
AU  - A. I. Sozutov
TI  - On periodic groups acting freely on abelian groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 136
EP  - 143
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/
LA  - ru
ID  - TIMM_2013_19_3_a12
ER  - 
%0 Journal Article
%A A. Kh. Zhurtov
%A D. V. Lytkina
%A V. D. Mazurov
%A A. I. Sozutov
%T On periodic groups acting freely on abelian groups
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 136-143
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/
%G ru
%F TIMM_2013_19_3_a12
A. Kh. Zhurtov; D. V. Lytkina; V. D. Mazurov; A. I. Sozutov. On periodic groups acting freely on abelian groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 3, pp. 136-143. http://geodesic.mathdoc.fr/item/TIMM_2013_19_3_a12/