On a~new family of conditionally positive definite radial basis functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 256-266

Voir la notice de l'article provenant de la source Math-Net.Ru

A new family of conditionally positive definite radial basis functions is proposed, which can be applied for constructing multivariate splines in $\mathbb R^d$, $d\in\mathbb N$. The family is a natural generalization of known constructions of splines with tension and regularized splines.
Keywords: completely monotonic function, radial basis function, spline.
@article{TIMM_2013_19_2_a24,
     author = {A. I. Rozhenko},
     title = {On a~new family of conditionally positive definite radial basis functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {256--266},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a24/}
}
TY  - JOUR
AU  - A. I. Rozhenko
TI  - On a~new family of conditionally positive definite radial basis functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 256
EP  - 266
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a24/
LA  - ru
ID  - TIMM_2013_19_2_a24
ER  - 
%0 Journal Article
%A A. I. Rozhenko
%T On a~new family of conditionally positive definite radial basis functions
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 256-266
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a24/
%G ru
%F TIMM_2013_19_2_a24
A. I. Rozhenko. On a~new family of conditionally positive definite radial basis functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 256-266. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a24/