On a~new family of conditionally positive definite radial basis functions
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 256-266
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new family of conditionally positive definite radial basis functions is proposed, which can be applied for constructing multivariate splines in $\mathbb R^d$, $d\in\mathbb N$. The family is a natural generalization of known constructions of splines with tension and regularized splines.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
completely monotonic function, radial basis function, spline.
                    
                  
                
                
                @article{TIMM_2013_19_2_a24,
     author = {A. I. Rozhenko},
     title = {On a~new family of conditionally positive definite radial basis functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {256--266},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a24/}
}
                      
                      
                    TY - JOUR AU - A. I. Rozhenko TI - On a~new family of conditionally positive definite radial basis functions JO - Trudy Instituta matematiki i mehaniki PY - 2013 SP - 256 EP - 266 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a24/ LA - ru ID - TIMM_2013_19_2_a24 ER -
A. I. Rozhenko. On a~new family of conditionally positive definite radial basis functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 2, pp. 256-266. http://geodesic.mathdoc.fr/item/TIMM_2013_19_2_a24/
