Harmonic wavelets in a multiply connected domain with circular boundaries
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 99-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new approach to the solution of the Schwarz and Dirichlet problems in a domain with circular components of the boundary is proposed. The convergence rate is studied for the series that represent a solution in spaces of Hardy type and converge uniformly for smooth boundary values. Examples of functions for which the constructed series diverge are presented. Harmonic wavelets are constructed such that series in these wavelets converge for all functions from the considered spaces.
Keywords: Schwarz problem, Dirichlet problem, harmonic wavelets, basis in spaces of harmonic functions.
@article{TIMM_2013_19_1_a9,
     author = {G. A. Dubosarskii},
     title = {Harmonic wavelets in a~multiply connected domain with circular boundaries},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {99--114},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a9/}
}
TY  - JOUR
AU  - G. A. Dubosarskii
TI  - Harmonic wavelets in a multiply connected domain with circular boundaries
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 99
EP  - 114
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a9/
LA  - ru
ID  - TIMM_2013_19_1_a9
ER  - 
%0 Journal Article
%A G. A. Dubosarskii
%T Harmonic wavelets in a multiply connected domain with circular boundaries
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 99-114
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a9/
%G ru
%F TIMM_2013_19_1_a9
G. A. Dubosarskii. Harmonic wavelets in a multiply connected domain with circular boundaries. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 99-114. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a9/

[1] Goluzin G. M., “Reshenie osnovnykh ploskikh zadach matematicheskoi fiziki dlya sluchaya uravneniya Laplace'a i mnogosvyaznykh oblastei, ogranichennykh okruzhnostyami (metod funktsionalnykh uravnenii)”, Mat. sb., 41:2 (1934), 246–276 | Zbl

[2] Aleksandrov I. A., Sorokin A. S., “Zadacha Shvartsa dlya mnogosvyaznykh krugovykh oblastei”, Sib. mat. zhurn., 13:5 (1972), 970–1001

[3] Mityushev V. V., “R-linear and Riemann–Hilbert problems for multiply connected domains”, Advances in applied analysis, Birkhauser, New York, 2012, 147–176 | DOI

[4] Aksentev L. A., “Postroenie operatora Shvartsa metodom simmetrii”, Tr. seminara po kraev. zadacham, 2, 1964, 3–11

[5] Aksentev L. A., “Postroenie operatora Shvartsa metodom simmetrii”, Tr. seminara po kraev. zadacham, 3, 1966, 11–24 | MR

[6] Aksentev L. A., “Postroenie operatora Shvartsa metodom simmetrii”, Tr. seminara po kraev. zadacham, 4, 1967, 3–10

[7] Patsevich E. L., “O postroenii operatora Shvartsa v krugovoi schetno-svyaznoi $\sigma$-oblasti metodom simmetrii”, Izv. vuzov. Matematika, 1986, no. 10, 67–76 | MR | Zbl

[8] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, Uspekhi mat. nauk, 26:1 (1971), 113–179 | MR | Zbl

[9] Subbotin Yu. N., Chernykh N. I., “Vspleski v prostranstvakh garmonicheskikh funktsii”, Izv. RAN. Seriya matematicheskaya, 64:1 (2000), 145–174 | DOI | MR | Zbl

[10] Subbotin Yu. N., Chernykh N. I., “Vspleski periodicheskie, garmonicheskie i analiticheskie v kruge s netsentralnym otverstiem”, Tr. Mezhdunar. letnei mat. shkoly S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 129–149

[11] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl

[12] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980, 304 pp.

[13] Korneichuk N. P., Ligun A. A., Doronin V. G., Approksimatsiya s ogranicheniyami, Nauk. dumka, Kiev, 1982, 249 pp. | MR

[14] Zigmund A., Trigonometricheskie ryady, Mir, M., 1964, 611 pp.