@article{TIMM_2013_19_1_a9,
author = {G. A. Dubosarskii},
title = {Harmonic wavelets in a~multiply connected domain with circular boundaries},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {99--114},
year = {2013},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a9/}
}
G. A. Dubosarskii. Harmonic wavelets in a multiply connected domain with circular boundaries. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 99-114. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a9/
[1] Goluzin G. M., “Reshenie osnovnykh ploskikh zadach matematicheskoi fiziki dlya sluchaya uravneniya Laplace'a i mnogosvyaznykh oblastei, ogranichennykh okruzhnostyami (metod funktsionalnykh uravnenii)”, Mat. sb., 41:2 (1934), 246–276 | Zbl
[2] Aleksandrov I. A., Sorokin A. S., “Zadacha Shvartsa dlya mnogosvyaznykh krugovykh oblastei”, Sib. mat. zhurn., 13:5 (1972), 970–1001
[3] Mityushev V. V., “R-linear and Riemann–Hilbert problems for multiply connected domains”, Advances in applied analysis, Birkhauser, New York, 2012, 147–176 | DOI
[4] Aksentev L. A., “Postroenie operatora Shvartsa metodom simmetrii”, Tr. seminara po kraev. zadacham, 2, 1964, 3–11
[5] Aksentev L. A., “Postroenie operatora Shvartsa metodom simmetrii”, Tr. seminara po kraev. zadacham, 3, 1966, 11–24 | MR
[6] Aksentev L. A., “Postroenie operatora Shvartsa metodom simmetrii”, Tr. seminara po kraev. zadacham, 4, 1967, 3–10
[7] Patsevich E. L., “O postroenii operatora Shvartsa v krugovoi schetno-svyaznoi $\sigma$-oblasti metodom simmetrii”, Izv. vuzov. Matematika, 1986, no. 10, 67–76 | MR | Zbl
[8] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, Uspekhi mat. nauk, 26:1 (1971), 113–179 | MR | Zbl
[9] Subbotin Yu. N., Chernykh N. I., “Vspleski v prostranstvakh garmonicheskikh funktsii”, Izv. RAN. Seriya matematicheskaya, 64:1 (2000), 145–174 | DOI | MR | Zbl
[10] Subbotin Yu. N., Chernykh N. I., “Vspleski periodicheskie, garmonicheskie i analiticheskie v kruge s netsentralnym otverstiem”, Tr. Mezhdunar. letnei mat. shkoly S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 129–149
[11] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl
[12] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980, 304 pp.
[13] Korneichuk N. P., Ligun A. A., Doronin V. G., Approksimatsiya s ogranicheniyami, Nauk. dumka, Kiev, 1982, 249 pp. | MR
[14] Zigmund A., Trigonometricheskie ryady, Mir, M., 1964, 611 pp.