Some properties of solutions of second-order linear ordinary differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 69-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Riccati equation method is used to obtain lower and upper estimates for the distance between two consecutive zeros of a solution and the derivative of the solution to a second-order linear ordinary differential equation in terms of its coefficients. Oscillation conditions and a stability condition are proved, and a theorem on the asymptotic behavior of zeros of solutions to a second-order linear equation and on the asymptotic behavior of one of the solutions to this equation is established.
Mots-clés : Riccati equation, oscillation, nonoscillation, oscillation on a finite interval
Keywords: estimation of the distance between two consecutive zeroes, asymptotic behavior, stability.
@article{TIMM_2013_19_1_a6,
     author = {G. A. Grigoryan},
     title = {Some properties of solutions of second-order linear ordinary differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {69--80},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a6/}
}
TY  - JOUR
AU  - G. A. Grigoryan
TI  - Some properties of solutions of second-order linear ordinary differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 69
EP  - 80
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a6/
LA  - ru
ID  - TIMM_2013_19_1_a6
ER  - 
%0 Journal Article
%A G. A. Grigoryan
%T Some properties of solutions of second-order linear ordinary differential equations
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 69-80
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a6/
%G ru
%F TIMM_2013_19_1_a6
G. A. Grigoryan. Some properties of solutions of second-order linear ordinary differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 69-80. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a6/

[1] Chezari L., Asimptoticheskoe povedenie i ustoichivost reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1964, 479 pp.

[2] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970, 720 pp. | MR

[3] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954, 215 pp.

[4] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983, 352 pp. | MR | Zbl

[5] Adrianova L. Ya., Vvedenie v teoriyu lineinykh sistem differentsialnykh uravnenii, Izd-vo S.-Peterb. un-ta, SPb., 1992, 239 pp. | MR

[6] Trikomi F., Differentsialnye uravneniya, IL, M., 1962, 351 pp.

[7] Mak-Lakhlan N. V., Teoriya i prilozheniya funktsii Mate, Mir, M., 1953, 476 pp.

[8] Sobol I. M., “Issledovanie asimptoticheskogo povedeniya reshenii lineinykh differentsialnykh uravnenii vtorogo poryadka pri pomoschi polyarnykh koordinat”, Mat. sb., 28(70):3 (1951), 707–714 | MR | Zbl

[9] Gusarov L. A., “O stremlenii k nulyu reshenii lineinykh differentsialnykh uravnenii vtorogo poryadka”, Dokl. AN SSSR, 71:1 (1950), 9–12 | MR | Zbl

[10] Kondratev V. A., “Dostatochnye usloviya nekoleblemosti i koleblemosti reshenii uravneniya $y''+p(x)y=0$”, Dokl. AN SSSR, 113:4 (1957), 742–745

[11] Kondratev V. A., “O nulyakh reshenii uravneniya $y^{(n)}+p(x)y=0$”, Dokl. AN SSSR, 120:6 (1958), 1190–1182

[12] Kondratev V. A., “O koleblemosti reshenii uravneniya $y^{(n)}+p(x)y=0$”, Tr. Mosk. mat. o-va, 10, 1961, 419–436 | MR | Zbl

[13] Stafford R. A., Heidel J. W., “A new comparison theorem for scalar Riccati equations”, Bull Amer. Math. Soc., 80:4 (1974), 754–757 | DOI | MR | Zbl

[14] Travis C. C., “Remarks on a comparison theorem for scalar Riccati equations”, Proc. Amer. Math. Soc., 52 (1952), 311–324 | DOI | MR

[15] Liu W.-L., Li H.-J., “Oscillation criteria for second order linear differential equations with damping”, J. Appl. Analysis, 2:1 (1996), 105–118 | MR | Zbl

[16] Howards H. C., “Scalar and matrix complex nonoscillation criteria”, Proc. Edinburgh Math. Soc. Ser. 2, 18:03 (1973), 173–189 | DOI | MR

[17] Kwong M. K., “Integral criteria for second-order linear oscillation”, Electron. J. Qual. Theory Differ. Equ., 2006 (2006), 10, 18 pp., (electronic) | MR

[18] Yan J., “Oscillation theorems for second order linear differential equations with damping”, Proc. Amer. Math. Soc., 98:1 (1986), 276–282 | DOI | MR | Zbl

[19] Grigoryan G. A., “O dvukh priznakakh sravneniya dlya lineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 47:9 (2011), 1225–1240 | MR | Zbl

[20] Egorov A. I., Uravneniya Rikkati, Fizmatlit, M., 2001, 476 pp.