On the question of estimation of the stability defect in an approach game problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 205-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A game problem of the approach to a compact target set at a fixed termination time is studied. We investigate the question of estimating the stability defect of a set in the space of game positions, which is weakly invariant with respect to a finite set of unification differential inclusions.
Keywords: approach game problem, control, stable bridge, Hamiltonian, stability defect.
@article{TIMM_2013_19_1_a19,
     author = {A. G. Malev},
     title = {On the question of estimation of the stability defect in an approach game problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {205--216},
     year = {2013},
     volume = {19},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a19/}
}
TY  - JOUR
AU  - A. G. Malev
TI  - On the question of estimation of the stability defect in an approach game problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2013
SP  - 205
EP  - 216
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a19/
LA  - ru
ID  - TIMM_2013_19_1_a19
ER  - 
%0 Journal Article
%A A. G. Malev
%T On the question of estimation of the stability defect in an approach game problem
%J Trudy Instituta matematiki i mehaniki
%D 2013
%P 205-216
%V 19
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a19/
%G ru
%F TIMM_2013_19_1_a19
A. G. Malev. On the question of estimation of the stability defect in an approach game problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 19 (2013) no. 1, pp. 205-216. http://geodesic.mathdoc.fr/item/TIMM_2013_19_1_a19/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Ushakov V. N., Latushkin Ya. A., “Defekt stabilnosti mnozhestv v igrovykh zadachakh upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 178–194 | MR | Zbl

[4] Ushakov V. N., Malëv A. G., “K voprosu o defekte stabilnosti mnozhestv v igrovoi zadache o sblizhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 199–222

[5] Ushakov V. N., Uspenskii A. A., “Ob odnom dopolnenii k svoistvu stabilnosti v differentsialnykh igrakh”, Tr. Matematicheskogo in-ta im. V. A. Steklova RAN, 271, 2010, 299–318 | MR

[6] Krasovskii N. N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR

[7] Krasovskii N. N., “Unifikatsiya differentsialnykh igr”, Igrovye zadachi upravleniya, Tr. In-ta matematiki i mekhaniki, 24, UNTs AN SSSR, Sverdlovsk, 1977, 32–45 | MR

[8] Guseinov H. G., Subbotin A. I., Ushakov V. N., “Derivatives for multivalued mappings with applications to game-theoretical problems of control”, Probl. Control Inform. Theory, 14:6 (1985), 405–419 | MR

[9] V. N. Ushakov, Kh. G. Guseinov, Ya. A. Latushkin, P. D. Lebedev, “O sovpadenii maksimalnykh stabilnykh mostov v dvukh igrovykh zadachakh o sblizhenii dlya statsionarnykh upravlyaemykh sistem”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 219–240

[10] Ushakov V. N., Teoriya minimaksnykh differentsialnykh igr (chast I), Dep. rukopis No 4425-80, IMM UNTs AN SSSR, Sverdlovsk, 1980, 187 pp.

[11] Tarasev A. M., Ushakov V. N., O postroenii stabilnykh mostov v minimaksnoi igre sblizheniya-ukloneniya, Dep. v VINITI, No 2454-83, Sverdlovsk, 1983, 61 pp.

[12] Tarasev A. M., Ushakov V. N., Khripunov A. P., “Ob odnom vychislitelnom algoritme resheniya igrovykh zadach upravleniya”, Prikl. matematika i mekhanika, 51:2 (1987), 216–222 | MR