@article{TIMM_2012_18_4_a19,
author = {N. A. Kuklin},
title = {Delsarte method in the problem on kissing numbers in high-dimensional spaces},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {224--239},
year = {2012},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a19/}
}
N. A. Kuklin. Delsarte method in the problem on kissing numbers in high-dimensional spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 224-239. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a19/
[1] Arestov V. V., Babenko A. G., “O skheme Delsarta otsenki kontaktnykh chisel”, Tr. MIAN, 219, 1997, 44–73 | MR | Zbl
[2] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 896 pp.
[3] Delsart F., Algebraicheskii podkhod k skhemam otnoshenii teorii kodirovaniya, Mir, M., 1976, 136 pp. | MR
[4] Kabatyanskii G. A., Levenshtein V. I., “O granitsakh dlya upakovok na sfere i v prostranstve”, Problemy peredachi informatsii, 14:1 (1978), 3–25 | MR | Zbl
[5] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, 2, Mir, M., 1990, 791 pp.
[6] Kuklin N. A., “Vid ekstremalnoi funktsii v zadache Delsarta otsenki sverkhu kontaktnogo chisla trekhmernogo prostranstva”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 225–232
[7] Levenshtein V. I., “Granitsy dlya upakovok metricheskikh prostranstv i nekotorye ikh prilozheniya”, Problemy kibernetiki, 40, 1983, 44–110
[8] Levenshtein V. I., “O granitsakh dlya upakovok v $n$-mernom evklidovom prostranstve”, Dokl. AN SSSR, 245:6 (1979), 1299–1303 | MR
[9] Musin O. R., “Problema dvadtsati pyati sfer”, Uspekhi mat. nauk, 58:4(352) (2003), 153–154 | DOI | MR | Zbl
[10] Prasolov V. V., Mnogochleny, 3-e izd., ispr., MTsNMO, M., 2003, 336 pp.
[11] Sidelnikov V. M., “Ob ekstremalnykh mnogochlenakh, ispolzuemykh pri otsenkakh moschnosti koda”, Problemy peredachi informatsii, 16:3 (1980), 17–30 | MR | Zbl
[12] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, 3-e izd., pererab. i dop., Fizmatlit, M., 2005, 480 pp. | MR
[13] Shtrom D. V., “Metod Delsarta v zadache o kontaktnykh chislakh evklidovykh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 2, 2002, 162–189 | MR
[14] Yudin V. A., “Minimum potentsialnoi energii tochechnoi sistemy zaryadov”, Diskret. matematika, 4:2 (1992), 115–121 | MR | Zbl
[15] Anderson E. J., Nash P., Linear programming in infinite-dimensional spaces: Theory and Applications, Wiley Intersci. ser. in discrete mathematics and optimization, Wiley, Chichester etc., 1987, 172 pp. | MR
[16] Buchberger B., An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, Ph. D. dissertation, University of Innsbruck, 1965 ; J. Symb. Comp., 41 (2006), 475–511, (English translation by M. Abramson) | Zbl | DOI | MR | Zbl
[17] Delsarte Ph., “Bounds for unrestricted codes, by linear programming”, Philips Res. Rep., 27 (1972), 272–289 | MR | Zbl
[18] Faugere J.-C., “A new efficient algorithm for computing Groebner bases ($F4$)”, J. Pure and Appl. Alg., 139:1–3 (1999), 61–88 | DOI | MR | Zbl
[19] Mittelmann H. D., Vallentin F., “High-accuracy semidefinite programming bounds for kissing numbers”, Experiment. Math., 19:2 (2010), 174–178 | DOI | MR
[20] Musin O. R., “The kissing problem in three dimensions”, Discrete Comput. Geom., 35:3 (2006), 375–384 | DOI | MR | Zbl
[21] Musin O. R., “The kissing number in four dimensions”, Ann. of Math., 168:1 (2008), 1–32 | DOI | MR | Zbl
[22] Odlyzko A. M., Sloane N. J. A., “New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions”, J. Combinatorial Theory Ser. A, 26:2 (1979), 210–214 | DOI | MR | Zbl
[23] Schutte K., van der Waerden B. L., “Das Problem der dreizehn Kugeln”, Math. Ann., 125 (1953), 325–334 | DOI | MR