Delsarte method in the problem on kissing numbers in high-dimensional spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 224-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider extremal problems for continuous functions that are nonpositive on a closed interval and can be represented as series in Gegenbauer polynomials with nonnegative coefficients. These problems arise from the Delsarte method of finding an upper bound for the kissing number in the Euclidean space. We develop a general method for solving such problems. Using this method, we reproduce results of previous authors and find a solution in the following 11 new dimensions: 147, 157, 158, 159, 160, 162, 163, 164, 165, 167, and 173. The arising extremal polynomials are of a new type.
Keywords: Delsarte method, infinite-dimensional linear programming, Gegenbauer polynomials, kissing numbers.
@article{TIMM_2012_18_4_a19,
     author = {N. A. Kuklin},
     title = {Delsarte method in the problem on kissing numbers in high-dimensional spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {224--239},
     year = {2012},
     volume = {18},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a19/}
}
TY  - JOUR
AU  - N. A. Kuklin
TI  - Delsarte method in the problem on kissing numbers in high-dimensional spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 224
EP  - 239
VL  - 18
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a19/
LA  - ru
ID  - TIMM_2012_18_4_a19
ER  - 
%0 Journal Article
%A N. A. Kuklin
%T Delsarte method in the problem on kissing numbers in high-dimensional spaces
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 224-239
%V 18
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a19/
%G ru
%F TIMM_2012_18_4_a19
N. A. Kuklin. Delsarte method in the problem on kissing numbers in high-dimensional spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 4, pp. 224-239. http://geodesic.mathdoc.fr/item/TIMM_2012_18_4_a19/

[1] Arestov V. V., Babenko A. G., “O skheme Delsarta otsenki kontaktnykh chisel”, Tr. MIAN, 219, 1997, 44–73 | MR | Zbl

[2] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 896 pp.

[3] Delsart F., Algebraicheskii podkhod k skhemam otnoshenii teorii kodirovaniya, Mir, M., 1976, 136 pp. | MR

[4] Kabatyanskii G. A., Levenshtein V. I., “O granitsakh dlya upakovok na sfere i v prostranstve”, Problemy peredachi informatsii, 14:1 (1978), 3–25 | MR | Zbl

[5] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, 2, Mir, M., 1990, 791 pp.

[6] Kuklin N. A., “Vid ekstremalnoi funktsii v zadache Delsarta otsenki sverkhu kontaktnogo chisla trekhmernogo prostranstva”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 225–232

[7] Levenshtein V. I., “Granitsy dlya upakovok metricheskikh prostranstv i nekotorye ikh prilozheniya”, Problemy kibernetiki, 40, 1983, 44–110

[8] Levenshtein V. I., “O granitsakh dlya upakovok v $n$-mernom evklidovom prostranstve”, Dokl. AN SSSR, 245:6 (1979), 1299–1303 | MR

[9] Musin O. R., “Problema dvadtsati pyati sfer”, Uspekhi mat. nauk, 58:4(352) (2003), 153–154 | DOI | MR | Zbl

[10] Prasolov V. V., Mnogochleny, 3-e izd., ispr., MTsNMO, M., 2003, 336 pp.

[11] Sidelnikov V. M., “Ob ekstremalnykh mnogochlenakh, ispolzuemykh pri otsenkakh moschnosti koda”, Problemy peredachi informatsii, 16:3 (1980), 17–30 | MR | Zbl

[12] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, 3-e izd., pererab. i dop., Fizmatlit, M., 2005, 480 pp. | MR

[13] Shtrom D. V., “Metod Delsarta v zadache o kontaktnykh chislakh evklidovykh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 2, 2002, 162–189 | MR

[14] Yudin V. A., “Minimum potentsialnoi energii tochechnoi sistemy zaryadov”, Diskret. matematika, 4:2 (1992), 115–121 | MR | Zbl

[15] Anderson E. J., Nash P., Linear programming in infinite-dimensional spaces: Theory and Applications, Wiley Intersci. ser. in discrete mathematics and optimization, Wiley, Chichester etc., 1987, 172 pp. | MR

[16] Buchberger B., An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, Ph. D. dissertation, University of Innsbruck, 1965 ; J. Symb. Comp., 41 (2006), 475–511, (English translation by M. Abramson) | Zbl | DOI | MR | Zbl

[17] Delsarte Ph., “Bounds for unrestricted codes, by linear programming”, Philips Res. Rep., 27 (1972), 272–289 | MR | Zbl

[18] Faugere J.-C., “A new efficient algorithm for computing Groebner bases ($F4$)”, J. Pure and Appl. Alg., 139:1–3 (1999), 61–88 | DOI | MR | Zbl

[19] Mittelmann H. D., Vallentin F., “High-accuracy semidefinite programming bounds for kissing numbers”, Experiment. Math., 19:2 (2010), 174–178 | DOI | MR

[20] Musin O. R., “The kissing problem in three dimensions”, Discrete Comput. Geom., 35:3 (2006), 375–384 | DOI | MR | Zbl

[21] Musin O. R., “The kissing number in four dimensions”, Ann. of Math., 168:1 (2008), 1–32 | DOI | MR | Zbl

[22] Odlyzko A. M., Sloane N. J. A., “New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions”, J. Combinatorial Theory Ser. A, 26:2 (1979), 210–214 | DOI | MR | Zbl

[23] Schutte K., van der Waerden B. L., “Das Problem der dreizehn Kugeln”, Math. Ann., 125 (1953), 325–334 | DOI | MR