Interior penalty functions and duality in linear programming
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 83-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Logarithmic additive terms of barrier type with a penalty parameter are included into the Lagrange function of a linear programming problem. As a result, the problem of searching for saddle points of the modified Lagrangian becomes unconstrained (the saddle point is sought with respect to the whole space of primal and dual variables). Theorems on the asymptotic convergence to the desired solution and analogs of the duality theorems for the arising optimization minimax and maximin problem statements are formulated.
Keywords: linear programming, uality, inner penalty functions.
@article{TIMM_2012_18_3_a9,
     author = {I. I. Eremin and L. D. Popov},
     title = {Interior penalty functions and duality in linear programming},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {83--89},
     year = {2012},
     volume = {18},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a9/}
}
TY  - JOUR
AU  - I. I. Eremin
AU  - L. D. Popov
TI  - Interior penalty functions and duality in linear programming
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2012
SP  - 83
EP  - 89
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a9/
LA  - ru
ID  - TIMM_2012_18_3_a9
ER  - 
%0 Journal Article
%A I. I. Eremin
%A L. D. Popov
%T Interior penalty functions and duality in linear programming
%J Trudy Instituta matematiki i mehaniki
%D 2012
%P 83-89
%V 18
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a9/
%G ru
%F TIMM_2012_18_3_a9
I. I. Eremin; L. D. Popov. Interior penalty functions and duality in linear programming. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 18 (2012) no. 3, pp. 83-89. http://geodesic.mathdoc.fr/item/TIMM_2012_18_3_a9/

[1] Eremin I. I., Theory of linear optimization, Ser. Inverse and ill-posed problems, VSP, Utrecht, 2002, 284 pp. | MR

[2] Eremin I. I., Astafev N. N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya, Nauka, M., 1976, 192 pp. | MR | Zbl

[3] Zangvill U. I., Nelineinoe programmirovanie. Edinyi podkhod, Sov. radio, M., 1973, 312 pp.

[4] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp. | MR

[5] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982, 432 pp. | MR | Zbl

[6] K.-Kh. Elster, R. Reingard, M. Shoible, G. Donat, Vvedenie v nelineinoe programmirovanie, per. s nem., ed. I. I. Eremin, Nauka, M., 1985, 284 pp. | MR

[7] Fiakko A., Mak-Kormik G., Nelineinoe programmirovanie. Metody posledovatelnoi bezuslovnoi minimizatsii, Mir, M., 1972, 240 pp. | MR | Zbl

[8] Skarin V. D., “O metode barernykh funktsii i algoritmakh korrektsii nesobstvennykh zadach vypuklogo programmirovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 115–128 | Zbl

[9] Roos C., Terlaky T., Vial J.-Ph., Theory and algorithms for linear optimization, John Wiley Sons Ltd, Chichester, 1997, 484 pp. | MR