A generalization of the Birkhoff--Whitney theorem for hereditary systems
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 66-75
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The notion of hereditary system is a natural generalization of the notion of matroid. We prove the following generalization of the Birkhoff–Whitney theorem for hereditary systems: the lattice of closed sets of any hereditary system does not contain infinite chains and, vice versa, any nonempty lattice without infinite chains is isomorphic to the lattice of closed sets of some hereditary system. In particular, any finite nonempty lattice is isomorphic to the lattice of closed sets of some finite hereditary system.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
hereditary system, matroid, closure operator, geometric lattice, hypergraph.
                    
                  
                
                
                @article{TIMM_2011_17_4_a5,
     author = {M. Yu. Vyplov},
     title = {A generalization of the {Birkhoff--Whitney} theorem for hereditary systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {66--75},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a5/}
}
                      
                      
                    M. Yu. Vyplov. A generalization of the Birkhoff--Whitney theorem for hereditary systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 66-75. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a5/
