On finite Alperin $p$-groups with homocyclic commutator subgroup
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 53-65
Voir la notice de l'article provenant de la source Math-Net.Ru
We study metabelian Alperin groups, i.e., metabelian groups in which every 2-generated subgroup has a cyclic commutator subgroup. It is known that, if the minimum number of generators $d(G)$ of a finite Alperin $p$-group $G$ is $n\geq3$, then $d(G')\leq C_n^2$ for $p\neq3$ and $d(G')\leq C_n^2+C_n^3$ for $p=3$. The first section of the paper deals with finite Alperin $p$-groups $G$ with $d(G)\geq3$ and $p\neq3$ that have a homocyclic commutator subgroup of rank $C_n^2$. In addition, a corollary is deduced for infinite Alperin $p$-groups. In the second section, we prove that, if $G$ is a finite Alperin $3$-group with a homocyclic commutator subgroup $G'$ of rank $C_n^2+C_n^3$, then $G'$ is an elementary abelian group.
Mots-clés :
$p$-group
Keywords: Alperin group, commutator subgroup, definition of group by means of generators and defining relations.
Keywords: Alperin group, commutator subgroup, definition of group by means of generators and defining relations.
@article{TIMM_2011_17_4_a4,
author = {B. M. Veretennikov},
title = {On finite {Alperin} $p$-groups with homocyclic commutator subgroup},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {53--65},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a4/}
}
B. M. Veretennikov. On finite Alperin $p$-groups with homocyclic commutator subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 53-65. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a4/