On graphs in which neighborhoods of vertices are isomorphic to the Higman--Sims graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 189-198

Voir la notice de l'article provenant de la source Math-Net.Ru

The Higman–Sims graph is the unique strongly regular graph with parameters $(100,22,0,6)$. In this paper, amply regular graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph are classified. This result continues the investigation of amply regular locally $\mathcal F$-graphs, where $\mathcal F$ is the class of strongly regular graphs without triangles.
Keywords: strongly regular graph, Higman–Sims graph, locally $\mathcal F$-graph.
@article{TIMM_2011_17_4_a19,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {On graphs in which neighborhoods of vertices are isomorphic to the {Higman--Sims} graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {189--198},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a19/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - On graphs in which neighborhoods of vertices are isomorphic to the Higman--Sims graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 189
EP  - 198
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a19/
LA  - ru
ID  - TIMM_2011_17_4_a19
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T On graphs in which neighborhoods of vertices are isomorphic to the Higman--Sims graph
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 189-198
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a19/
%G ru
%F TIMM_2011_17_4_a19
A. A. Makhnev; D. V. Paduchikh. On graphs in which neighborhoods of vertices are isomorphic to the Higman--Sims graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 189-198. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a19/