On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 189-198
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Higman–Sims graph is the unique strongly regular graph with parameters $(100,22,0,6)$. In this paper, amply regular graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph are classified. This result continues the investigation of amply regular locally $\mathcal F$-graphs, where $\mathcal F$ is the class of strongly regular graphs without triangles.
Keywords: strongly regular graph, Higman–Sims graph, locally $\mathcal F$-graph.
@article{TIMM_2011_17_4_a19,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {On graphs in which neighborhoods of vertices are isomorphic to the {Higman{\textendash}Sims} graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {189--198},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a19/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 189
EP  - 198
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a19/
LA  - ru
ID  - TIMM_2011_17_4_a19
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 189-198
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a19/
%G ru
%F TIMM_2011_17_4_a19
A. A. Makhnev; D. V. Paduchikh. On graphs in which neighborhoods of vertices are isomorphic to the Higman–Sims graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 189-198. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a19/

[1] Damerell R. M., “On Moore graphs”, Proc. Cambr. Phil. Soc., 74 (1973), 227–236 | DOI | MR | Zbl

[2] Aschbacher M., “The nonexistence of rank three permutation groups of degree 3250 and subdegree 57”, J. Algebra, 19:3 (1971), 538–540 | DOI | MR | Zbl

[3] Kardanova M. L., Makhnev A. A., “O grafakh, v kotorykh okrestnosti vershin yavlyayutsya grafami, dopolnitelnymi k grafu Zeidelya”, Tr. Mezhdunar. algebr. konf., posvyaschennoi 80-letiyu A. I. Kostrikina, Nalchik, 2009, 63–66

[4] Gavrilyuk A. L., Makhnev A. A., “Distantsionno regulyarnye grafy, v kotorykh okrestnosti vershin izomorfny grafu Khofmana–Singltona”, Dokl. AN, 428:2 (2009), 157–160 | MR | Zbl

[5] Gavrilyuk A. L., Makhnev A. A., Paduchikh D. V., “O grafakh, v kotorykh okrestnosti vershin izomorfny grafu Gevirttsa”, Dokl. AN, 428:3 (2009), 300–304 | MR | Zbl

[6] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[7] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskret. analiz i issled. operatsii, 3:3 (1996), 71–83 | MR | Zbl