Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 3-18
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The purpose of the paper is to prove the following theorem. Let integers $n,t$, and $h$ be such that $0$ and $h\leq3$. Then, any complete $t$-partite graph with nontrivial parts that has height $h$ in the lattice $NPL(n,t)$ is chromatically unique.
Mots-clés : integer partition, complete multipartite graph
Keywords: lattice, graph, chromatic polynomial, chromatic uniqueness.
@article{TIMM_2011_17_4_a0,
     author = {V. A. Baranskii and T. A. Sen'chonok},
     title = {Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--18},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/}
}
TY  - JOUR
AU  - V. A. Baranskii
AU  - T. A. Sen'chonok
TI  - Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 3
EP  - 18
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/
LA  - ru
ID  - TIMM_2011_17_4_a0
ER  - 
%0 Journal Article
%A V. A. Baranskii
%A T. A. Sen'chonok
%T Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 3-18
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/
%G ru
%F TIMM_2011_17_4_a0
V. A. Baranskii; T. A. Sen'chonok. Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 3-18. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/

[1] Senchonok T. A., Baranskii V. A., “Klassifikatsiya elementov maloi vysoty v reshetkakh polnykh mnogodolnykh grafov”, Trudy Instituta matematiki i mekhaniki UrO RAN, 17, no. 2, 2011, 159–173

[2] Senchonok T. A., “Khromaticheskaya opredelyaemost elementov vysoty 2 v reshetkakh polnykh mnogodolnykh grafov”, Trudy Instituta matematiki i mekhaniki UrO RAN, 17, no. 3, 2011, 271–281

[3] Endryus G., Teoriya razbienii, Nauka, M., 1982, 256 pp. | MR

[4] Baranskii V. A., Koroleva T. A., “Reshetka razbienii naturalnogo chisla”, Dokl. AN, 418:4 (2008), 439–442 | MR

[5] Read R. C., “An introduction to chromatic polynomials”, J. Comb. Theory, 4 (1968), 52–71 | DOI | MR

[6] Chao C. Y., Whitehead E. G. (Jr.), “On chromatic equivalence of graphs”, Theory Appl. Graphs, 642 (1978), 121–131 | DOI | MR | Zbl

[7] Zhao H., Chromaticity and adjoint polynomials of graphs, Whrmann Print Service, Zutphen, 2005, 169 pp. | MR

[8] Chao C. Y., Novacky G. A. (Jr.), “On maximally saturated graphs”, Discrete Math., 41 (1982), 139–143 | DOI | MR | Zbl

[9] Baranskii V. A., Koroleva T. A., “Khromaticheskaya opredelyaemost atomov v reshetkakh polnykh mnogodolnykh grafov”, Trudy Instituta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 22–29

[10] Koroleva T. A., “Khromaticheskaya opredelyaemost nekotorykh polnykh trekhdolnykh grafov. I”, Trudy Instituta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 65–83

[11] Koroleva T. A., “Khromaticheskaya opredelyaemost nekotorykh polnykh trekhdolnykh grafov. II”, Izv. Ural. gos. un-ta. Matematika. Mekhanika. Informatika, 2010, no. 74(12), 39–56

[12] Baranskii V. A., Koroleva T. A., “Khromaticheskaya opredelyaemost nekotorykh polnykh trekhdolnykh grafov”, Izv. Ural. gos. un-ta. Matematika. Mekhanika. Informatika, 2010, no. 74(12), 5–26

[13] Koh K. M., Teo K. L., “The search for chromatically unique graphs”, Graphs Combin., 6 (1990), 259–285 | DOI | MR | Zbl

[14] Farrell E. J., “On chromatic coefficients”, Discrete Math., 29 (1980), 257–264 | DOI | MR | Zbl

[15] Baranskii V. A., Vikharev S. V., “O khromaticheskikh invariantakh dvudolnykh grafov”, Izv. Ural. gos. un-ta. Matematika i mekhanika, 2005, no. 36(7), 25–34 | MR

[16] Asanov M. O., Baranskii V. A., Rasin V. V., Diskretnaya matematika: grafy, matroidy, algoritmy, “Lan”, SPb., 2010, 368 pp.