Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 3-18
Voir la notice de l'article provenant de la source Math-Net.Ru
The purpose of the paper is to prove the following theorem. Let integers $n,t$, and $h$ be such that $0$ and $h\leq3$. Then, any complete $t$-partite graph with nontrivial parts that has height $h$ in the lattice $NPL(n,t)$ is chromatically unique.
Mots-clés :
integer partition, complete multipartite graph
Keywords: lattice, graph, chromatic polynomial, chromatic uniqueness.
Keywords: lattice, graph, chromatic polynomial, chromatic uniqueness.
@article{TIMM_2011_17_4_a0,
author = {V. A. Baranskii and T. A. Sen'chonok},
title = {Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {3--18},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/}
}
TY - JOUR AU - V. A. Baranskii AU - T. A. Sen'chonok TI - Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 3 EP - 18 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/ LA - ru ID - TIMM_2011_17_4_a0 ER -
%0 Journal Article %A V. A. Baranskii %A T. A. Sen'chonok %T Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs %J Trudy Instituta matematiki i mehaniki %D 2011 %P 3-18 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/ %G ru %F TIMM_2011_17_4_a0
V. A. Baranskii; T. A. Sen'chonok. Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 3-18. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/