Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 3-18

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the paper is to prove the following theorem. Let integers $n,t$, and $h$ be such that $0$ and $h\leq3$. Then, any complete $t$-partite graph with nontrivial parts that has height $h$ in the lattice $NPL(n,t)$ is chromatically unique.
Mots-clés : integer partition, complete multipartite graph
Keywords: lattice, graph, chromatic polynomial, chromatic uniqueness.
@article{TIMM_2011_17_4_a0,
     author = {V. A. Baranskii and T. A. Sen'chonok},
     title = {Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/}
}
TY  - JOUR
AU  - V. A. Baranskii
AU  - T. A. Sen'chonok
TI  - Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 3
EP  - 18
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/
LA  - ru
ID  - TIMM_2011_17_4_a0
ER  - 
%0 Journal Article
%A V. A. Baranskii
%A T. A. Sen'chonok
%T Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 3-18
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/
%G ru
%F TIMM_2011_17_4_a0
V. A. Baranskii; T. A. Sen'chonok. Chromatic uniqueness of elements of height $\leq3$ in lattices of complete multipartite graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 3-18. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a0/