Some classes of functions of a linear closed operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 186-200
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear closed densely defined operator and some domain $\Omega$ lying in the regular set of the operator and containing the negative real semiaxis of the real line are specified in a Banach space. We assume that power estimates for the norm of the resolvent operator are known at zero and infinity. We use the Cauchy integral formula to introduce operator functions generated by scalar functions that are analytic in a certain domain not containing the origin and containing the complement of $\Omega$ and have power estimates for their absolute values at zero and infinity. We study some properties of operator functions, which were studied by the authors earlier for the case of an operator whose inverse operator is bounded; in particular, we study the multiplicative property.
Keywords: linear closed operator, functions of an operator, multiplicative property, invertibility.
@article{TIMM_2011_17_3_a18,
     author = {L. F. Korkina and M. A. Rekant},
     title = {Some classes of functions of a~linear closed operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {186--200},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a18/}
}
TY  - JOUR
AU  - L. F. Korkina
AU  - M. A. Rekant
TI  - Some classes of functions of a linear closed operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 186
EP  - 200
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a18/
LA  - ru
ID  - TIMM_2011_17_3_a18
ER  - 
%0 Journal Article
%A L. F. Korkina
%A M. A. Rekant
%T Some classes of functions of a linear closed operator
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 186-200
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a18/
%G ru
%F TIMM_2011_17_3_a18
L. F. Korkina; M. A. Rekant. Some classes of functions of a linear closed operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 186-200. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a18/

[1] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 895 pp.

[2] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967, 275 pp. | MR

[3] Rudin U., Funktsionalnyi analiz, Mir, M., 1975, 449 pp. | MR

[4] M. A. Krasnoselskii [i dr.], Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 499 pp. | MR

[5] Sobolevskii P. E., Chebotareva L. M., “O drobnykh stepenyakh plokho pozitivnykh operatorov”, Tr. mat. fak-ta Voronezh. un-ta, 3, Voronezh, 1971, 112–118

[6] Martinez C., Miguel S., Javier P., “A functional calculus and fractional powers for multivalued linear operators”, Osaka J. Math., 37:3 (2000), 551–576 | MR | Zbl

[7] Korkina L. F., Rekant M. A., “Rasshirenie klassa stepennykh operatornykh funktsii”, Izv. Ural. gos. un-ta. Matematika i mekhanika, 2005, no. 38(8), 80–90 | Zbl