Voir la notice du chapitre de livre
@article{TIMM_2010_16_4_a4,
author = {A. G. Babenko and Yu. V. Kryakin and V. A. Yudin},
title = {On one of {Geronimus's} results},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {54--64},
year = {2010},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a4/}
}
A. G. Babenko; Yu. V. Kryakin; V. A. Yudin. On one of Geronimus's results. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 54-64. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a4/
[1] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 406 pp.
[2] Babenko A.G., Kryakin Yu.V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki, 14, no. 3, 2008, 19–37
[3] Badkov V.M., Vvedenie v edinuyu teoriyu algebraicheskikh i trigonometricheskikh ortogonalnykh polinomov, ucheb. posobie, Izd-vo Ural. gos. un-ta, Ekaterinburg, 2006, 132 pp.
[4] Bernshtein S.N., Sobranie sochinenii: v 4 t., v. 1, Konstruktivnaya teoriya funktsii (1905-1930), Izd-vo AN SSSR, M., 1952, 581 pp.
[5] Bernshtein S.N., Sobranie sochinenii: v 4 t., v. 2, Konstruktivnaya teoriya funktsii (1931-1953), Izd-vo AN SSSR, M., 1954, 629 pp.
[6] Bernshtein S.N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, Ch. 1, L.; M., 1937, 204 pp.
[7] Galeev E.M., “Zadacha Zolotareva v metrike $L_1([-1, 1])$”, Mat. zametki, 17:1 (1975), 13–20 | MR | Zbl
[8] Geit V.E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1, 1]$ (3-e soobsch.)”, Sib. zhurn. vychisl. matematiki, 2:3 (1999), 223–238
[9] Geronimus Ya.L., “Ob odnoi zadache F. Riesz i obobschennoi zadache Chebysheva - Korkina - Zolotareva”, Izv. AN SSSR. Ser. mat., 1939, no. 3, 279–288 | Zbl
[10] Krein M., “K teorii nailuchshego priblizheniya periodicheskikh funktsii”, Dokl. AN SSSR, 18:4-5 (1938), 245–249 | Zbl
[11] Polia G., Sege G., Zadachi i teoremy iz analiza, 1, Nauka, M., 1978, 392 pp.
[12] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.
[13] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp.
[14] Chebyshev P.L., “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, Poln. sobr. soch.: v 5 t., v. 2, Matematicheskii analiz, Izd-vo AN SSSR, M.; L., 1947, 23–51
[15] Chebyshev P.L., “Voprosy o naimenshikh velichinakh, svyazannye s priblizhennym predstavleniem funktsii”, Poln. sobr. soch.: v 5 t., v. 2, Matematicheskii analiz, Izd-vo AN SSSR, M.; L., 1947, 151–235
[16] DeVore R.A., Lorentz G.G., Constructive approximation, Springer-Verlag, Berlin, 1993, 446 pp. | MR
[17] Geronimus J., “Sur quelques propriétés extrémales polynômes, dont les coefficients premiers sont donnés”, Soobsch. Khark. mat. o-va. Ser. 4, 12 (1935), 49–59 | Zbl
[18] Geronimus J., “On some extremal properties of polynomials”, Ann. Math., 37:2 (1936), 483–517 | DOI | MR | Zbl
[19] Jackson D., “A general class of problems in approximation”, Amer. J. Math., 46:4 (1924), 215–234 | DOI | MR | Zbl
[20] Peherstorfer F., “Trigonometric polynomials approximation in $L_1$-norm”, Mat. Ztschr., 169, no. 3, 1979, 261–269 | MR | Zbl
[21] Peherstorfer F., “On the representation of extremal functions in the $L_1$-norm”, J. Approx. Theory, 27:1 (1979), 61–75 | DOI | MR | Zbl