On one of Geronimus's results
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 54-64
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In 1935, Ya. L. Geronimus found for the function $\sin(n+1)t-2q\sin{nt}$, $q\in\mathbb R$, the best integral approximation on the period $[-\pi,\pi)$ by the subspace of trigonometric polynomials of degree at most $n-1$. The result was an integral analog of the known theorem by E. I. Zolotarev (1868). At present, there are several methods of proving the mentioned fact. We propose one more variant of the proof. In the case $|q|\ge1$, we apply the $(2\pi/n)$-periodization as well as the orthogonality of the function $|\sin{nt}|$ and the harmonic $\cos t$ on the period. In the case $|q|1$, we use the duality relations for P. L. Chebyshev's theorem (1859) on a rational function least deviating from zero on a segment in the uniform metric.
Keywords: integral and uniform approximation of individual functions by polynomials.
@article{TIMM_2010_16_4_a4,
     author = {A. G. Babenko and Yu. V. Kryakin and V. A. Yudin},
     title = {On one of {Geronimus's} results},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {54--64},
     year = {2010},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a4/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - Yu. V. Kryakin
AU  - V. A. Yudin
TI  - On one of Geronimus's results
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 54
EP  - 64
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a4/
LA  - ru
ID  - TIMM_2010_16_4_a4
ER  - 
%0 Journal Article
%A A. G. Babenko
%A Yu. V. Kryakin
%A V. A. Yudin
%T On one of Geronimus's results
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 54-64
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a4/
%G ru
%F TIMM_2010_16_4_a4
A. G. Babenko; Yu. V. Kryakin; V. A. Yudin. On one of Geronimus's results. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 4, pp. 54-64. http://geodesic.mathdoc.fr/item/TIMM_2010_16_4_a4/

[1] Akhiezer N.I., Lektsii po teorii approksimatsii, Nauka, M., 1965, 406 pp.

[2] Babenko A.G., Kryakin Yu.V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki, 14, no. 3, 2008, 19–37

[3] Badkov V.M., Vvedenie v edinuyu teoriyu algebraicheskikh i trigonometricheskikh ortogonalnykh polinomov, ucheb. posobie, Izd-vo Ural. gos. un-ta, Ekaterinburg, 2006, 132 pp.

[4] Bernshtein S.N., Sobranie sochinenii: v 4 t., v. 1, Konstruktivnaya teoriya funktsii (1905-1930), Izd-vo AN SSSR, M., 1952, 581 pp.

[5] Bernshtein S.N., Sobranie sochinenii: v 4 t., v. 2, Konstruktivnaya teoriya funktsii (1931-1953), Izd-vo AN SSSR, M., 1954, 629 pp.

[6] Bernshtein S.N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, Ch. 1, L.; M., 1937, 204 pp.

[7] Galeev E.M., “Zadacha Zolotareva v metrike $L_1([-1, 1])$”, Mat. zametki, 17:1 (1975), 13–20 | MR | Zbl

[8] Geit V.E., “O polinomakh, naimenee uklonyayuschikhsya ot nulya v metrike $L[-1, 1]$ (3-e soobsch.)”, Sib. zhurn. vychisl. matematiki, 2:3 (1999), 223–238

[9] Geronimus Ya.L., “Ob odnoi zadache F. Riesz i obobschennoi zadache Chebysheva - Korkina - Zolotareva”, Izv. AN SSSR. Ser. mat., 1939, no. 3, 279–288 | Zbl

[10] Krein M., “K teorii nailuchshego priblizheniya periodicheskikh funktsii”, Dokl. AN SSSR, 18:4-5 (1938), 245–249 | Zbl

[11] Polia G., Sege G., Zadachi i teoremy iz analiza, 1, Nauka, M., 1978, 392 pp.

[12] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.

[13] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 304 pp.

[14] Chebyshev P.L., “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, Poln. sobr. soch.: v 5 t., v. 2, Matematicheskii analiz, Izd-vo AN SSSR, M.; L., 1947, 23–51

[15] Chebyshev P.L., “Voprosy o naimenshikh velichinakh, svyazannye s priblizhennym predstavleniem funktsii”, Poln. sobr. soch.: v 5 t., v. 2, Matematicheskii analiz, Izd-vo AN SSSR, M.; L., 1947, 151–235

[16] DeVore R.A., Lorentz G.G., Constructive approximation, Springer-Verlag, Berlin, 1993, 446 pp. | MR

[17] Geronimus J., “Sur quelques propriétés extrémales polynômes, dont les coefficients premiers sont donnés”, Soobsch. Khark. mat. o-va. Ser. 4, 12 (1935), 49–59 | Zbl

[18] Geronimus J., “On some extremal properties of polynomials”, Ann. Math., 37:2 (1936), 483–517 | DOI | MR | Zbl

[19] Jackson D., “A general class of problems in approximation”, Amer. J. Math., 46:4 (1924), 215–234 | DOI | MR | Zbl

[20] Peherstorfer F., “Trigonometric polynomials approximation in $L_1$-norm”, Mat. Ztschr., 169, no. 3, 1979, 261–269 | MR | Zbl

[21] Peherstorfer F., “On the representation of extremal functions in the $L_1$-norm”, J. Approx. Theory, 27:1 (1979), 61–75 | DOI | MR | Zbl