On Shunkov groups with a~strongly embedded almost layer-finite subgroup
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 234-239

Voir la notice de l'article provenant de la source Math-Net.Ru

Infinite Shunkov groups with the following condition are studied: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, the almost layer-finiteness of the periodic part of a Shunkov group with a strongly embedded almost layer-finite subgroup is established. Earlier, the author proved the almost layer-finiteness of a Shunkov group with a strongly embedded subgroup either under the condition that all proper subgroups are almost layer-finite or under the condition that the group is periodic. The case of a strongly embedded subgroup with a Chernikov almost layer-finite periodic part was also investigated earlier.
Keywords: infinite groups, finiteness conditions, layer-finiteness, periodicity.
@article{TIMM_2010_16_3_a25,
     author = {V. I. Senashov},
     title = {On {Shunkov} groups with a~strongly embedded almost layer-finite subgroup},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {234--239},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a25/}
}
TY  - JOUR
AU  - V. I. Senashov
TI  - On Shunkov groups with a~strongly embedded almost layer-finite subgroup
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 234
EP  - 239
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a25/
LA  - ru
ID  - TIMM_2010_16_3_a25
ER  - 
%0 Journal Article
%A V. I. Senashov
%T On Shunkov groups with a~strongly embedded almost layer-finite subgroup
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 234-239
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a25/
%G ru
%F TIMM_2010_16_3_a25
V. I. Senashov. On Shunkov groups with a~strongly embedded almost layer-finite subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 234-239. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a25/