On Shunkov groups with a strongly embedded almost layer-finite subgroup
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 234-239
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Infinite Shunkov groups with the following condition are studied: the normalizer of any finite nontrivial subgroup has an almost layer-finite periodic part. Under this condition, the almost layer-finiteness of the periodic part of a Shunkov group with a strongly embedded almost layer-finite subgroup is established. Earlier, the author proved the almost layer-finiteness of a Shunkov group with a strongly embedded subgroup either under the condition that all proper subgroups are almost layer-finite or under the condition that the group is periodic. The case of a strongly embedded subgroup with a Chernikov almost layer-finite periodic part was also investigated earlier.
Keywords: infinite groups, finiteness conditions, layer-finiteness, periodicity.
@article{TIMM_2010_16_3_a25,
     author = {V. I. Senashov},
     title = {On {Shunkov} groups with a~strongly embedded almost layer-finite subgroup},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {234--239},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a25/}
}
TY  - JOUR
AU  - V. I. Senashov
TI  - On Shunkov groups with a strongly embedded almost layer-finite subgroup
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 234
EP  - 239
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a25/
LA  - ru
ID  - TIMM_2010_16_3_a25
ER  - 
%0 Journal Article
%A V. I. Senashov
%T On Shunkov groups with a strongly embedded almost layer-finite subgroup
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 234-239
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a25/
%G ru
%F TIMM_2010_16_3_a25
V. I. Senashov. On Shunkov groups with a strongly embedded almost layer-finite subgroup. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 234-239. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a25/

[1] Chernikov S. N., “K teorii beskonechnykh $p$-grupp”, Dokl. AN SSSR, 50 (1945), 71–74 | Zbl

[2] Izmailov A. N., Shunkov V. P., “Dva priznaka neprostoty gruppy s beskonechno izolirovannoi podgruppoi”, Algebra i logika, 21:6 (1982), 647–669 | MR

[3] Izmailov A. N., “O silno vlozhennoi beskonechno izolirovannoi podgruppe v periodicheskoi gruppe”, Algebra i logika, 22:2 (1983), 128–137 | MR

[4] Mazurov V. D., “O dvazhdy tranzitivnykh gruppakh podstanovok”, Sib. mat. zhurn., 31:4 (1990), 102–104 | MR | Zbl

[5] Mazurov V. D., “O beskonechnykh gruppakh s abelevymi tsentralizatorami involyutsii”, Algebra i logika, 39:1 (2000), 74–86 | MR | Zbl

[6] Sozutov A. I., “O nekotorykh beskonechnykh gruppakh s silno vlozhennoi podgruppoi”, Algebra i logika, 39:5 (2000), 602–617 | MR

[7] Sozutov A. I., Suchkov N. M., “O beskonechnykh gruppakh s zadannoi silno izolirovannoi 2-podgruppoi”, Mat. zametki, 68:2 (2000), 272–285 | MR | Zbl

[8] Sozutov A. I., “Dva priznaka neprostoty gruppy s silno vlozhennoi podgruppoi i konechnoi involyutsiei”, Mat. zametki, 69:3 (2001), 443–453 | MR | Zbl

[9] Suchkov N. M., “O periodicheskikh gruppakh s abelevymi tsentralizatorami involyutsii”, Mat. sb., 193:2 (2002), 153–160 | MR | Zbl

[10] Senashov V. I., “Dostatochnye usloviya pochti sloinoi konechnosti gruppy”, Ukr. mat. zhurn., 51:4 (1999), 472–485 | MR | Zbl

[11] Senashov V. I., “Stroenie beskonechnoi silovskoi podgruppy v nekotorykh periodicheskikh gruppakh Shunkova”, Diskret. matematika, 14:4 (2002), 133–152 | MR | Zbl

[12] Senashov V. I., “O gruppakh Shunkova s silno vlozhennoi podgruppoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 203–210

[13] Chernikov S. N., Gruppy s zadannymi svoistvami sistemy podgrupp, Nauka, M., 1980, 384 pp. | MR

[14] Shunkov V. P., $M_p$-gruppy, Nauka, M., 1990, 160 pp. | MR | Zbl

[15] Shunkov V. P., O vlozhenii primarnykh elementov v gruppe, Nauka, Novosibirsk, 1992, 148 pp. | MR | Zbl

[16] Senashov V. I., Shunkov V. P., “Pochti sloinaya konechnost periodicheskoi chasti gruppy bez involyutsii”, Diskret. matematika, 15:3 (2003), 91–104 | MR | Zbl

[17] Senashov V. I., “Gruppy s usloviem minimalnosti dlya ne pochti sloino konechnykh podgrupp”, Ukr. mat. zhurn., 43:7–8 (1991), 1002–1008 | MR | Zbl

[18] Kurosh A. G., Teoriya grupp, 3-e izd., Nauka, M., 1967, 648 pp. | MR | Zbl

[19] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 3-e izd., pererab. i dop., Nauka, M., 1982, 288 pp. | MR | Zbl

[20] Sozutov A. I., Shunkov V. P., “O beskonechnykh gruppakh, nasyschennykh frobeniusovymi podgruppami. 2”, Algebra i logika, 18:2 (1979), 206–223 | MR | Zbl