On the connection of geometric properties of curves and properties of their motion groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 227-233
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Connections between geometric properties of curves and properties of their motion groups are established. Motions of two types, namely, positive and negative motions, are defined for curves. A necessary and sufficient condition for a smooth curve to possess a motion of one of these types is given. The notion of a motion group of a curve is defined in different ways, and classes of curves are specified for which these notions coincide. Closed curves are investigated in terms of their motion groups, and a necessary and sufficient condition for a smooth curve to be closed is presented.
Keywords: curve, image of a curve, curvatures of a curve, closedness of a curve.
Mots-clés : motion, group of motions
@article{TIMM_2010_16_3_a24,
     author = {E. A. Rogozinnikov},
     title = {On the connection of geometric properties of curves and properties of their motion groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {227--233},
     year = {2010},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a24/}
}
TY  - JOUR
AU  - E. A. Rogozinnikov
TI  - On the connection of geometric properties of curves and properties of their motion groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 227
EP  - 233
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a24/
LA  - ru
ID  - TIMM_2010_16_3_a24
ER  - 
%0 Journal Article
%A E. A. Rogozinnikov
%T On the connection of geometric properties of curves and properties of their motion groups
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 227-233
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a24/
%G ru
%F TIMM_2010_16_3_a24
E. A. Rogozinnikov. On the connection of geometric properties of curves and properties of their motion groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 3, pp. 227-233. http://geodesic.mathdoc.fr/item/TIMM_2010_16_3_a24/

[1] Aminov Yu. A., Differentsialnaya geometriya i topologiya krivykh, Nauka, M., 1987, 160 pp. | MR | Zbl

[2] Vitner Ch., “Differentsialnaya geometriya krivykh v tsentroevklidovykh prostranstvakh”, Chekhoslav. mat. zhurn., 12:87 (1962), 119–143 | MR

[3] Zaidenberg M. G., “Izotrivialnye semeistva krivykh na affinnykh poverkhnostyakh i kharakterizatsiya affinnoi ploskosti”, Izv. AN SSSR. Ser. matematicheskaya, 51:3 (1987), 534–567 | MR | Zbl

[4] Nikolaevskii Yu. A., “O probleme V. Fenkhelya”, Mat. zametki, 56:5 (1994), 87–97 | MR | Zbl

[5] Rozov N. Kh., “Feliks Klein i ego erlangenskaya programma”, Mat. prosvyaschenie. Ser. 3, 3 (1999), 49–55

[6] Sizyi S. V., Lektsii po differentsialnoi geometrii, Fizmatlit, M., 2007, 376 pp.