One bottleneck routing problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 152-170
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An extremal routing problem with a criterion that has the sense of the greatest edge length of a polygonal line is considered. It is assumed that the costs at every step (stage) of the travel may depend on a list of tasks that have not been fulfilled by the beginning of this step. In addition, there are constraints in the form of precedence conditions. An economical variant of the procedure is constructed based on the dynamic programming method.
Keywords: routing, precedence conditions.
@article{TIMM_2010_16_1_a12,
     author = {A. N. Sesekin and A. A. Chentsov and A. G. Chentsov},
     title = {One bottleneck routing problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {152--170},
     year = {2010},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a12/}
}
TY  - JOUR
AU  - A. N. Sesekin
AU  - A. A. Chentsov
AU  - A. G. Chentsov
TI  - One bottleneck routing problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2010
SP  - 152
EP  - 170
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a12/
LA  - ru
ID  - TIMM_2010_16_1_a12
ER  - 
%0 Journal Article
%A A. N. Sesekin
%A A. A. Chentsov
%A A. G. Chentsov
%T One bottleneck routing problem
%J Trudy Instituta matematiki i mehaniki
%D 2010
%P 152-170
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a12/
%G ru
%F TIMM_2010_16_1_a12
A. N. Sesekin; A. A. Chentsov; A. G. Chentsov. One bottleneck routing problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 16 (2010) no. 1, pp. 152-170. http://geodesic.mathdoc.fr/item/TIMM_2010_16_1_a12/

[1] Chentsov A. A., Chentsov A. G., “Ekstremalnaya zadacha marshrutizatsii “na uzkie mesta” s ogranicheniyami v vide uslovii predshestvovaniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 129–142 | Zbl

[2] Sigal I. Kh., Ivanova A. P., Vvedenie v prikladnoe diskretnoe programmirovanie: modeli i vychislitelnye algoritmy, Nauka, M., 2007, 304 pp.

[3] Melamed I. I., Sergeev S. I., Sigal I. Kh., “Zadacha kommivoyazhera. Voprosy teorii”, Avtomatika i telemekhanika, 1989, no. 9, 3–34 | MR

[4] Kormen T., Leizerson Ch., Rivest R., Algoritmy: postroenie i analiz, MTsNMO, M., 2002, 960 pp.

[5] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[6] Chentsov A. G., Ekstremalnye zadachi marshrutizatsii i raspredeleniya zadanii: voprosy teorii, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2008, 240 pp.

[7] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[8] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[9] Geri M., Dzhonson D., Vychislitelnye mashiny i trudno reshaemye zadachi, Mir, M., 1982, 416 pp. | MR