On the result equivalence of constraints of asymptotic nature
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 241-261

Voir la notice de l'article provenant de la source Math-Net.Ru

An abstract control problem with constraints of integral nature is considered. Conditions are established for the equivalence of different variants of asymptotic constraints corresponding to weakening the traditional constraints on the choice of the controls. The proposed approach is based on an extension construction in the class of finitely additive measures. For a long time, the author has had the wonderful opportunity to discuss his results concerning the mentioned (rather nontraditional) approach with N. N. Krasovskii; these discussions and the support of this approach by N. N. Krasovskii played an important role in its formation and development.
Keywords: finitely additive measure, attraction set
Mots-clés : net.
@article{TIMM_2009_15_3_a16,
     author = {A. G. Chentsov},
     title = {On the result equivalence of constraints of asymptotic nature},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {241--261},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a16/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - On the result equivalence of constraints of asymptotic nature
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 241
EP  - 261
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a16/
LA  - ru
ID  - TIMM_2009_15_3_a16
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T On the result equivalence of constraints of asymptotic nature
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 241-261
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a16/
%G ru
%F TIMM_2009_15_3_a16
A. G. Chentsov. On the result equivalence of constraints of asymptotic nature. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 241-261. http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a16/