On the result equivalence of constraints of asymptotic nature
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 241-261
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An abstract control problem with constraints of integral nature is considered. Conditions are established for the equivalence of different variants of asymptotic constraints corresponding to weakening the traditional constraints on the choice of the controls. The proposed approach is based on an extension construction in the class of finitely additive measures. For a long time, the author has had the wonderful opportunity to discuss his results concerning the mentioned (rather nontraditional) approach with N. N. Krasovskii; these discussions and the support of this approach by N. N. Krasovskii played an important role in its formation and development.
Keywords: finitely additive measure, attraction set
Mots-clés : net.
@article{TIMM_2009_15_3_a16,
     author = {A. G. Chentsov},
     title = {On the result equivalence of constraints of asymptotic nature},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {241--261},
     year = {2009},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a16/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - On the result equivalence of constraints of asymptotic nature
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 241
EP  - 261
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a16/
LA  - ru
ID  - TIMM_2009_15_3_a16
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T On the result equivalence of constraints of asymptotic nature
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 241-261
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a16/
%G ru
%F TIMM_2009_15_3_a16
A. G. Chentsov. On the result equivalence of constraints of asymptotic nature. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 3, pp. 241-261. http://geodesic.mathdoc.fr/item/TIMM_2009_15_3_a16/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[3] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[4] Chentsov A. G., “Konstruirovanie operatsii predelnogo perekhoda s ispolzovaniem ultrafiltrov izmerimykh prostranstv”, Avtomatika i telemekhanika, 2007, no. 11, 208–222 | MR | Zbl

[5] Daffin R. Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, IL, M., 1959, 263–267

[6] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp. | MR

[7] Chentsov A. G., “Finitely Additive Measures and Extensions of Abstract Control Problems”, J. Math. Sci., 133:2 (2006), 1045–1206 | DOI | MR | Zbl

[8] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovremennaya matematika i ee prilozheniya. In-t kibernetiki AN Gruzii, 2005, no. 26, 119–150 | MR

[9] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh upravleniya”, Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi, Tr. Mezhdunar. seminara, T. 1, Izd-vo Ural. gos. un-ta, Ekaterinburg, 2006, 48–60 | MR

[10] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12, no. 1, Ekaterinburg, 2006, 216–241 | MR | Zbl

[11] Chentsov A. G., Asymptotic attainability, Kluwer Acad. Publishers, Dordrecht–Boston–London, 1997, 322 pp. | MR | Zbl

[12] Chentsov A. G., “Finitely Additive Measures and Extension Constructions”, Atti Semin. Mat. Fis. Univ. Modena, 49 (2001), 531–545 | MR | Zbl

[13] Chentsov A. G., “Asimptoticheski dostizhimye elementy i ikh obobschennoe predstavlenie”, Tr. In-ta matematiki i mekhaniki UrO RAN, 3, Ekaterinburg, 1995, 211–244 | MR | Zbl

[14] Chentsov A. G., “Vektornye konechno-additivnye mery i voprosy regulyarizatsii zadachi o postroenii mnozhestv asimptoticheskoi dostizhimosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 4, Ekaterinburg, 1996, 266–295 | MR | Zbl

[15] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Plenum Publishing Corporation, New York–London–Moscow, 1996, 244 pp. | MR | Zbl

[16] Chentsov A. G., “K voprosu o korrektnom rasshirenii odnoi zadachi o vybore plotnosti veroyatnosti pri ogranicheniyakh na sistemu matematicheskikh ozhidanii”, Uspekhi mat. nauk, 50:5(305) (1995), 223–242 | MR | Zbl

[17] Zhdanok A. I., “Gamma-kompaktifikatsiya izmerimykh prostranstv”, Sib. mat. zhurn., 44:3 (2003), 587–605 | MR | Zbl

[18] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[19] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp. | MR

[20] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981, 431 pp. | MR

[21] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006, 332 pp.

[22] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[23] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 895 pp.

[24] Bhaskara Rao K. P. S., Bhaskara Rao M., Theory of charges. A study of finitely additive measures, Acad. Press, New York, 1983, 253 pp. | MR | Zbl

[25] Chentsov A. G., Morina S. I., Extensions and Relaxations, Kluwer Acad. Publishers, Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl

[26] Chentsov A. G., “Universalnaya asimptoticheskaya realizatsiya integralnykh ogranichenii i konstruktsii rasshireniya v klasse konechno-additivnykh mer”, Tr. In-ta matematiki i mekhaniki UrO RAN, 5, Ekaterinburg, 1998, 328–356 | Zbl

[27] Chentsov A. G., “K voprosu o postroenii korrektnykh rasshirenii v klasse konechno-additivnykh mer”, Izv. vuzov. Matematika, 2002, no. 2, 58–80 | MR | Zbl