On the automorphism group of the Aschbacher graph
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 162-176

Voir la notice de l'article provenant de la source Math-Net.Ru

A Moore graph is a regular graph of degree $k$ and diameter $d$ with $v$ vertices such that $v\le1+k+k(k-1)+\dots+k(k-1)^{d-1}$. It is known that a Moore graph of degree $k\ge3$ has diameter 2, i.e., it is strongly regular with parameters $\lambda=0$, $\mu=1$ and $v=k^2+1$, where the degree $k$ is equal to 3, 7, or 57. It is unknown whether there exists a Moore graph of degree $k=57$. Aschbacher showed that a Moore graph with $k=57$ is not a graph of rank 3. In this connection, we call a Moore graph with $k=57$ the Aschbacher graph and investigate its automorphism group $G$ without additional assumptions (earlier, it was assumed that $G$ contains an involution).
Mots-clés : automorphism group of a graph
Keywords: Moore graph, strongly regular graph.
@article{TIMM_2009_15_2_a14,
     author = {A. A. Makhnev and D. V. Paduchikh},
     title = {On the automorphism group of the {Aschbacher} graph},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {162--176},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a14/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - D. V. Paduchikh
TI  - On the automorphism group of the Aschbacher graph
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 162
EP  - 176
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a14/
LA  - ru
ID  - TIMM_2009_15_2_a14
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A D. V. Paduchikh
%T On the automorphism group of the Aschbacher graph
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 162-176
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a14/
%G ru
%F TIMM_2009_15_2_a14
A. A. Makhnev; D. V. Paduchikh. On the automorphism group of the Aschbacher graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 162-176. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a14/