Voir la notice du chapitre de livre
Keywords: Moore graph, strongly regular graph.
@article{TIMM_2009_15_2_a14,
author = {A. A. Makhnev and D. V. Paduchikh},
title = {On the automorphism group of the {Aschbacher} graph},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {162--176},
year = {2009},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a14/}
}
A. A. Makhnev; D. V. Paduchikh. On the automorphism group of the Aschbacher graph. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 2, pp. 162-176. http://geodesic.mathdoc.fr/item/TIMM_2009_15_2_a14/
[1] Damerell R. M., “On Moore graphs”, Math. Proc. Cambr. Phil. Soc., 74 (1973), 227–236 | DOI | MR | Zbl
[2] Aschbacher M., “The nonexistence of rank three permutation groups of degree 3250 and subdegree 57”, J. Algebra, 19:3 (1971), 538–540 | DOI | MR | Zbl
[3] Makhnev A. A., Paduchikh D. V., “Ob avtomorfizmakh grafa Ashbakhera”, Algebra i logika, 40:2 (2001), 125–134 | MR | Zbl
[4] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercise in the theory of graph spectra”, Europ. J. Comb., 14:5 (1993), 397–407 | DOI | MR | Zbl
[5] Cameron P., Permutation groups, London Math. Soc. Stud. Texts, 45, Cambr. Univ. Press, Cambridge, 1999, 220 pp. | Zbl
[6] Cameron P., Van Lint J., Designs, graphes, codes and their links, London Math. Soc. Stud. Texts, 22, Cambr. Univ. Press, Cambridge, 1989, 240 pp. | MR