The best extension of algebraic polynomials from the unit circle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 184-194

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class $\mathfrak P_n$ of algebraic polynomials $P_n(x,y)$ of two variables of degree $n$ whose uniform norm on the unit circle $\Gamma_1$ centered at the origin is at most 1: $\|P_n\|_{C(\Gamma_1)}\le1$. We study the extension of polynomials from the class $\mathfrak P_n$ to the plane with the least uniform norm on the concentric circle $\Gamma_r$ of radius $r$. We prove that the values $\theta_n(r)$ of the best extension of the class $\mathfrak P_n$ satisfy the equalities $\theta_n(r)=r^n$ for $r>1$ and $\theta_n(r)=r^n-1$ for $0$.
Keywords: polynomial of many variables, the best extension, uniform norm
Mots-clés : harmonic polynomial.
@article{TIMM_2009_15_1_a14,
     author = {A. V. Parfenenkov},
     title = {The best extension of algebraic polynomials from the unit circle},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {184--194},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a14/}
}
TY  - JOUR
AU  - A. V. Parfenenkov
TI  - The best extension of algebraic polynomials from the unit circle
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 184
EP  - 194
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a14/
LA  - ru
ID  - TIMM_2009_15_1_a14
ER  - 
%0 Journal Article
%A A. V. Parfenenkov
%T The best extension of algebraic polynomials from the unit circle
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 184-194
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a14/
%G ru
%F TIMM_2009_15_1_a14
A. V. Parfenenkov. The best extension of algebraic polynomials from the unit circle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 184-194. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a14/