The best extension of algebraic polynomials from the unit circle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 184-194
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the class $\mathfrak P_n$ of algebraic polynomials $P_n(x,y)$ of two variables of degree $n$ whose uniform norm on the unit circle $\Gamma_1$ centered at the origin is at most 1: $\|P_n\|_{C(\Gamma_1)}\le1$. We study the extension of polynomials from the class $\mathfrak P_n$ to the plane with the least uniform norm on the concentric circle $\Gamma_r$ of radius $r$. We prove that the values $\theta_n(r)$ of the best extension of the class $\mathfrak P_n$ satisfy the equalities $\theta_n(r)=r^n$ for $r>1$ and $\theta_n(r)=r^n-1$ for $0$.
Keywords:
polynomial of many variables, the best extension, uniform norm
Mots-clés : harmonic polynomial.
Mots-clés : harmonic polynomial.
@article{TIMM_2009_15_1_a14,
author = {A. V. Parfenenkov},
title = {The best extension of algebraic polynomials from the unit circle},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {184--194},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a14/}
}
A. V. Parfenenkov. The best extension of algebraic polynomials from the unit circle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 184-194. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a14/