The Galilei group in an optimal control problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 147-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, results of studying an optimal control problem for the motion of a material point under control constraints are presented. The invariance of this problem with respect to the extended Galilei group is used. From the viewpoint of calculations, the symmetry allows us to construct a family of solutions through an extremal determined numerically. From the analytical viewpoint, the symmetry gives an opportunity to reduce system's dimension and to investigate properties of extremals.
Keywords: controlled mechanical systems, symmetries.
@article{TIMM_2009_15_1_a11,
     author = {I. V. Koz'min},
     title = {The {Galilei} group in an optimal control problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {147--158},
     year = {2009},
     volume = {15},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a11/}
}
TY  - JOUR
AU  - I. V. Koz'min
TI  - The Galilei group in an optimal control problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2009
SP  - 147
EP  - 158
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a11/
LA  - ru
ID  - TIMM_2009_15_1_a11
ER  - 
%0 Journal Article
%A I. V. Koz'min
%T The Galilei group in an optimal control problem
%J Trudy Instituta matematiki i mehaniki
%D 2009
%P 147-158
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a11/
%G ru
%F TIMM_2009_15_1_a11
I. V. Koz'min. The Galilei group in an optimal control problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 15 (2009) no. 1, pp. 147-158. http://geodesic.mathdoc.fr/item/TIMM_2009_15_1_a11/

[1] Akulenko L. D., “Vozmuschennaya optimalnaya po bystrodeistviyu zadacha upravleniya konechnym polozheniem materialnoi tochki posredstvom ogranichennoi sily”, Prikl. matematika i mekhanika, 58:2 (1994), 12–21 | MR | Zbl

[2] Akulenko L. D., “Sintez upravleniya v zadache optimalnogo po bystrodeistviyu peresecheniya sfery”, Prikl. matematika i mekhanika, 60:5 (1996), 724–735 | MR | Zbl

[3] Akulenko L. D., Shmatkov A. M., “Optimalnoe po bystrodeistviyu dostizhenie sfery materialnoi tochkoi s nulevoi skorostyu”, Prikl. matematika i mekhanika, 66:1 (2002), 10–23 | MR | Zbl

[4] Akulenko L. D., Koshelev A. P., “Naiskoreishee privedenie dinamicheskogo ob'ekta v zadannoe polozhenie pri ravenstve nachalnoi i konechnoi skorostei”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 6, 98–105 | MR | Zbl

[5] Akulenko L. D., Koshelev A. P., “Naiskoreishee privedenie dinamicheskogo ob'ekta v iskhodnoe polozhenie s trebuemoi skorostyu”, Izv. RAN. Teoriya i sistemy upravleniya, 2005, no. 5, 46–52 | MR | Zbl

[6] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR

[7] Ibragimov V. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp. | MR

[8] Kukushkin A. P., “Necessary condition of optimality for the control lagrangian system”, Probl. Control and Inform. Theory, 13:4 (1984), 229–238 | MR | Zbl

[9] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979, 432 pp. | MR

[10] Kukushkin A. P., “Pokomponentnaya invariantnost upravlyaemykh mekhanicheskikh sistem”, Izv. Ural. gos. un-ta, 2003, no. 26, 97–107, Matematika i mekhanika, vyp. 5 | MR