Exact approximation of average subword complexity of finite random words over finite alphabet
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 4, pp. 185-189
Voir la notice de l'article provenant de la source Math-Net.Ru
One of the ways to measure the random nature of a word is to evaluate the quantity of different subwords
in it. Such a measure is called the subword complexity or complexity index. Direct interdependence between
subword complexity and the state of chaos is intuitively obvious. In this article we develop an explicit formula
suitable for approximation of the average subword complexity of the most chaotic–random–words.
@article{TIMM_2008_14_4_a13,
author = {E. E. Ivanko},
title = {Exact approximation of average subword complexity of finite random words over finite alphabet},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {185--189},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a13/}
}
TY - JOUR AU - E. E. Ivanko TI - Exact approximation of average subword complexity of finite random words over finite alphabet JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 185 EP - 189 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a13/ LA - en ID - TIMM_2008_14_4_a13 ER -
E. E. Ivanko. Exact approximation of average subword complexity of finite random words over finite alphabet. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 4, pp. 185-189. http://geodesic.mathdoc.fr/item/TIMM_2008_14_4_a13/