The Wirtinger--Steklov inequality between the norm of a~periodic function and the norm of the positive cutoff of its derivative
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 99-111
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the sharp constant in the inequality between the $L_p$-mean ($p\ge0$) of a $2\pi$-periodic function with zero mean value and the $L_q$-norm ($q\ge1$) of the positive cutoff of its derivative. We obtain estimates of the constant from below for $0\le p\le\infty$ and from above for $1\le p\le\infty$ for an arbitrary $1\le q\le\infty$. We write out the values of the sharp constant in the cases $p=2$, $1\le q\le\infty$ and $p=\infty$, $1\le q\le\infty$.
@article{TIMM_2008_14_3_a8,
author = {E. A. Zernyshkina},
title = {The {Wirtinger--Steklov} inequality between the norm of a~periodic function and the norm of the positive cutoff of its derivative},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {99--111},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a8/}
}
TY - JOUR AU - E. A. Zernyshkina TI - The Wirtinger--Steklov inequality between the norm of a~periodic function and the norm of the positive cutoff of its derivative JO - Trudy Instituta matematiki i mehaniki PY - 2008 SP - 99 EP - 111 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a8/ LA - ru ID - TIMM_2008_14_3_a8 ER -
%0 Journal Article %A E. A. Zernyshkina %T The Wirtinger--Steklov inequality between the norm of a~periodic function and the norm of the positive cutoff of its derivative %J Trudy Instituta matematiki i mehaniki %D 2008 %P 99-111 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a8/ %G ru %F TIMM_2008_14_3_a8
E. A. Zernyshkina. The Wirtinger--Steklov inequality between the norm of a~periodic function and the norm of the positive cutoff of its derivative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 99-111. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a8/