The Wirtinger–Steklov inequality between the norm of a periodic function and the norm of the positive cutoff of its derivative
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 99-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the sharp constant in the inequality between the $L_p$-mean ($p\ge0$) of a $2\pi$-periodic function with zero mean value and the $L_q$-norm ($q\ge1$) of the positive cutoff of its derivative. We obtain estimates of the constant from below for $0\le p\le\infty$ and from above for $1\le p\le\infty$ for an arbitrary $1\le q\le\infty$. We write out the values of the sharp constant in the cases $p=2$, $1\le q\le\infty$ and $p=\infty$, $1\le q\le\infty$.
@article{TIMM_2008_14_3_a8,
     author = {E. A. Zernyshkina},
     title = {The {Wirtinger{\textendash}Steklov} inequality between the norm of a~periodic function and the norm of the positive cutoff of its derivative},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {99--111},
     year = {2008},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a8/}
}
TY  - JOUR
AU  - E. A. Zernyshkina
TI  - The Wirtinger–Steklov inequality between the norm of a periodic function and the norm of the positive cutoff of its derivative
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 99
EP  - 111
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a8/
LA  - ru
ID  - TIMM_2008_14_3_a8
ER  - 
%0 Journal Article
%A E. A. Zernyshkina
%T The Wirtinger–Steklov inequality between the norm of a periodic function and the norm of the positive cutoff of its derivative
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 99-111
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a8/
%G ru
%F TIMM_2008_14_3_a8
E. A. Zernyshkina. The Wirtinger–Steklov inequality between the norm of a periodic function and the norm of the positive cutoff of its derivative. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 99-111. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a8/

[1] Khardi G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.

[2] Mitrinoviĉ D. S., Pečariĉ J. E., Fink A. M., Inequalities involving functions and their integrals and derivatives, Kluwer Acad. Publ., Dordrecht etc., 1991, 587 | MR | Zbl

[3] Schmidt E., “Über die Ungleichung, welche die Integrale über eine Potenz einer Funktion und über eine andere Potenz ihrer Ableitung verbindet”, Math. Ann., 117 (1940), 301–326 | DOI | MR

[4] Vladimirov V. S., Markush I. I., Vladimir Andreevich Steklov – uchenyi i organizator nauki, Nauka, M., 1981, 95 pp. | MR

[5] Korneichuk N. P., Ligun A. A., Doronin V. G., Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982, 252 pp. | MR

[6] Zernyshkina E. A., “Neravenstvo Shmidta mezhdu normami funktsii i polozhitelnoi srezki ee proizvodnoi”, Izv. Ural. gos. un-ta, 2006, no. 44, 89–112