@article{TIMM_2008_14_3_a10,
author = {V. V. Kabanov and S. V. Unegov},
title = {Amply regular graphs with {Hoffman's} condition},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {127--131},
year = {2008},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/}
}
V. V. Kabanov; S. V. Unegov. Amply regular graphs with Hoffman's condition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 127-131. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/
[1] Kabanov V. V., Makhnev A. A., Paduchikh D. V., “O grafakh bez koron s regulyarnymi $\mu$-podgrafami. II”, Mat. zametki, 74:3 (2003), 396–406 | MR | Zbl
[2] Kabanov V. V., Unegov S. V., “Silno regulyarnye grafy s usloviem Khoffmana”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 54–60
[3] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, New York, 1989, 495 pp. | MR
[4] Chang L. C., “Association schemes of partially balanced block designs with parameters $v=28$, $n_1=12$, $n_0=15$ and $p_{11}^2=4$”, Sci. Record., 4 (1950), 12–18 | MR
[5] Hestens M. D., Higman D. G., “Rank 3 groups and strongly regular graphs”, SIAM-AMS Proc., 4 (1971), 141–159 | MR
[6] Hoffman A. J., “On the uniqueness of the triangular association scheme”, Ann. Math. Statist., 31 (1960), 492–497 | DOI | MR | Zbl
[7] Hoffman A. J., “On the exceptional case in a characterization of the arcs of complete graphs”, IBM J. Res. Develop., 4 (1960), 487–496 | MR | Zbl
[8] Seidel J. J., “Strongly regular graphs with (-1,1,0) adjacency matrix having eigenvalue 3”, Linear Alg. Appl., 1 (1968), 281–298 | DOI | MR | Zbl
[9] Shrickhande S. S., “The uniqueness of the $L_2$ association scheme”, Ann. Math. Statist., 30 (1959), 781–798 | DOI | MR