Amply regular graphs with Hoffman's condition
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 127-131

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that, if the minimal eigenvalue of a graph is $-2$, then the graph satisfies Hoffman's condition: for any generated complete bipartite subgraph $K_{1,3}$ (a 3-claw) with parts $\{p\}$ and $\{q_1, q_2,q_3\}$, any vertex distinct from $p$ and adjacent to the vertices $q_1$ and $q_2$ is adjacent to $p$ but not adjacent to $q_3$. We prove the converse statement for amply regular graphs containing a 3-claw and satisfying the condition $\mu>1$.
@article{TIMM_2008_14_3_a10,
     author = {V. V. Kabanov and S. V. Unegov},
     title = {Amply regular graphs with {Hoffman's} condition},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {127--131},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/}
}
TY  - JOUR
AU  - V. V. Kabanov
AU  - S. V. Unegov
TI  - Amply regular graphs with Hoffman's condition
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 127
EP  - 131
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/
LA  - ru
ID  - TIMM_2008_14_3_a10
ER  - 
%0 Journal Article
%A V. V. Kabanov
%A S. V. Unegov
%T Amply regular graphs with Hoffman's condition
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 127-131
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/
%G ru
%F TIMM_2008_14_3_a10
V. V. Kabanov; S. V. Unegov. Amply regular graphs with Hoffman's condition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 127-131. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/