Amply regular graphs with Hoffman's condition
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 127-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is known that, if the minimal eigenvalue of a graph is $-2$, then the graph satisfies Hoffman's condition: for any generated complete bipartite subgraph $K_{1,3}$ (a 3-claw) with parts $\{p\}$ and $\{q_1, q_2,q_3\}$, any vertex distinct from $p$ and adjacent to the vertices $q_1$ and $q_2$ is adjacent to $p$ but not adjacent to $q_3$. We prove the converse statement for amply regular graphs containing a 3-claw and satisfying the condition $\mu>1$.
@article{TIMM_2008_14_3_a10,
     author = {V. V. Kabanov and S. V. Unegov},
     title = {Amply regular graphs with {Hoffman's} condition},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {127--131},
     year = {2008},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/}
}
TY  - JOUR
AU  - V. V. Kabanov
AU  - S. V. Unegov
TI  - Amply regular graphs with Hoffman's condition
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2008
SP  - 127
EP  - 131
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/
LA  - ru
ID  - TIMM_2008_14_3_a10
ER  - 
%0 Journal Article
%A V. V. Kabanov
%A S. V. Unegov
%T Amply regular graphs with Hoffman's condition
%J Trudy Instituta matematiki i mehaniki
%D 2008
%P 127-131
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/
%G ru
%F TIMM_2008_14_3_a10
V. V. Kabanov; S. V. Unegov. Amply regular graphs with Hoffman's condition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 127-131. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/

[1] Kabanov V. V., Makhnev A. A., Paduchikh D. V., “O grafakh bez koron s regulyarnymi $\mu$-podgrafami. II”, Mat. zametki, 74:3 (2003), 396–406 | MR | Zbl

[2] Kabanov V. V., Unegov S. V., “Silno regulyarnye grafy s usloviem Khoffmana”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 3, 2007, 54–60

[3] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, New York, 1989, 495 pp. | MR

[4] Chang L. C., “Association schemes of partially balanced block designs with parameters $v=28$, $n_1=12$, $n_0=15$ and $p_{11}^2=4$”, Sci. Record., 4 (1950), 12–18 | MR

[5] Hestens M. D., Higman D. G., “Rank 3 groups and strongly regular graphs”, SIAM-AMS Proc., 4 (1971), 141–159 | MR

[6] Hoffman A. J., “On the uniqueness of the triangular association scheme”, Ann. Math. Statist., 31 (1960), 492–497 | DOI | MR | Zbl

[7] Hoffman A. J., “On the exceptional case in a characterization of the arcs of complete graphs”, IBM J. Res. Develop., 4 (1960), 487–496 | MR | Zbl

[8] Seidel J. J., “Strongly regular graphs with (-1,1,0) adjacency matrix having eigenvalue 3”, Linear Alg. Appl., 1 (1968), 281–298 | DOI | MR | Zbl

[9] Shrickhande S. S., “The uniqueness of the $L_2$ association scheme”, Ann. Math. Statist., 30 (1959), 781–798 | DOI | MR