Amply regular graphs with Hoffman's condition
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 127-131
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that, if the minimal eigenvalue of a graph is $-2$, then the graph satisfies Hoffman's condition: for any generated complete bipartite subgraph $K_{1,3}$ (a 3-claw) with parts $\{p\}$ and $\{q_1, q_2,q_3\}$, any vertex distinct from $p$ and adjacent to the vertices $q_1$ and $q_2$ is adjacent to $p$ but not adjacent to $q_3$. We prove the converse statement for amply regular graphs containing a 3-claw and satisfying the condition $\mu>1$.
@article{TIMM_2008_14_3_a10,
author = {V. V. Kabanov and S. V. Unegov},
title = {Amply regular graphs with {Hoffman's} condition},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {127--131},
publisher = {mathdoc},
volume = {14},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/}
}
V. V. Kabanov; S. V. Unegov. Amply regular graphs with Hoffman's condition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 14 (2008) no. 3, pp. 127-131. http://geodesic.mathdoc.fr/item/TIMM_2008_14_3_a10/