Strongly regular graphs with Hoffman's condition
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 54-60
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is known that if the minimal eigenvalue of a graph is $-2$, then the graph satisfies Hoffman's condition; i.e., for any generated complete bipartite subgraph $K_{1,3}$ with parts $\{p\}$ and $\{q_1,q_2,q_3\}$, any vertex distinct from $p$ and adjacent to two vertices from the second part is not adjacent to the third vertex and is adjacent to $p$. We prove the converse statement, formulated for strongly regular graphs containing a 3-claw and satisfying the condition $gm>1$.
@article{TIMM_2007_13_3_a4,
     author = {V. V. Kabanov and S. V. Unegov},
     title = {Strongly regular graphs with {Hoffman's} condition},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {54--60},
     year = {2007},
     volume = {13},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a4/}
}
TY  - JOUR
AU  - V. V. Kabanov
AU  - S. V. Unegov
TI  - Strongly regular graphs with Hoffman's condition
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 54
EP  - 60
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a4/
LA  - ru
ID  - TIMM_2007_13_3_a4
ER  - 
%0 Journal Article
%A V. V. Kabanov
%A S. V. Unegov
%T Strongly regular graphs with Hoffman's condition
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 54-60
%V 13
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a4/
%G ru
%F TIMM_2007_13_3_a4
V. V. Kabanov; S. V. Unegov. Strongly regular graphs with Hoffman's condition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 54-60. http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a4/

[1] Kabanov V. V., Makhnev A. A., “Grafy bez 3-lap s ravnomoschnymi $\mu$-podgrafami”, Izv. Ural. un-ta, 1998, no. 10, 44–68 | MR | Zbl

[2] Kabanov V. V., Makhnev A. A., Paduchikh D. V., “O grafakh bez koron s regulyarnymi $\mu$-podgrafami, II”, Mat. zametki, 74:3 (2003), 396–406 | MR | Zbl

[3] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, New York, 1989 | MR

[4] Brouwer A. E., van Lint J. H., “Strongly regular graphs and partial geometries”, Enumerating and Design, eds. D. M. Jackson and S. A. Vanstone, Academic Press, New York, 1984, 85–122 | MR

[5] Chang L. C., “The unqueness and nonuniqueness of triangular association schemes”, Sci. Record., 3 (1949), 604–613 | MR

[6] Chang L. C., “Association schemes of partially balanced block designs with parameters $v=28$, $n_1=12$, $n_0=15$ and $p_{11}^2=4$”, Sci. Record., 4 (1950), 12–18 | MR

[7] Hestens M. D., Higman D. G., “Rank 3 groups and strongly regular graphs”, SIAM-AMS Proc., 4 (1971), 141–159 | MR

[8] Hoffman A. J., “On the uniqueness of the triangular association scheme”, Ann. Math. Stat., 31 (1960), 492–497 | DOI | MR | Zbl

[9] Hoffman A. J., “On the exceptional case in a characterization of the arcs of complete graphs”, IBM J. Res. Develop., 4 (1960), 487–496 | MR | Zbl

[10] Seidel J. J., “Strongly regular graphs with (-1,1,0) adjacency matrix having eigenvalue 3”, Linear Algebra and Appl., 1 (1968), 281–298 | DOI | MR | Zbl

[11] Shrickhande S. S., “The uniqueness of the $L_2$ association scheme”, Ann. Math. Stat., 30 (1959), 781–798 | DOI | MR