Strongly regular graphs with Hoffman's condition
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 54-60
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is known that if the minimal eigenvalue of a graph is $-2$, then the graph satisfies Hoffman's condition; i.e., for any generated complete bipartite subgraph $K_{1,3}$ with parts $\{p\}$ and $\{q_1,q_2,q_3\}$, any vertex distinct from $p$ and adjacent to two vertices from the second part is not adjacent to the third vertex and is adjacent to $p$. We prove the converse statement, formulated for strongly regular graphs containing a 3-claw and satisfying the condition $gm>1$.
			
            
            
            
          
        
      @article{TIMM_2007_13_3_a4,
     author = {V. V. Kabanov and S. V. Unegov},
     title = {Strongly regular graphs with {Hoffman's} condition},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {54--60},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a4/}
}
                      
                      
                    V. V. Kabanov; S. V. Unegov. Strongly regular graphs with Hoffman's condition. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 3, pp. 54-60. http://geodesic.mathdoc.fr/item/TIMM_2007_13_3_a4/
