On intersections of solvable Hall subgroups in finite nonsolvable groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 86-89
Cet article a éte moissonné depuis la source Math-Net.Ru
The author continues the investigation of intersections of Hall subgroups in finite groups. Previously, the author proved that in the case when a Hall subgroup is Sylow there are three subgroups conjugate to it such that their intersection coincides with the maximal normal primary subgroup. A similar assertion holds for Hall subgroups in solvable groups. The aim of this paper is to construct examples of a (nonsolvable) group in which the intersection of any four subgroups conjugate to some Hall subgroup is nontrivial.
@article{TIMM_2007_13_2_a7,
author = {V. I. Zenkov},
title = {On intersections of solvable {Hall} subgroups in finite nonsolvable groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {86--89},
year = {2007},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a7/}
}
V. I. Zenkov. On intersections of solvable Hall subgroups in finite nonsolvable groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 86-89. http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a7/
[1] Passman D. S., “Groups with normal solvable Hall $p$-subgroups”, Trans. Amer. Math. Soc., 123 (1966), 99–111 | DOI | MR | Zbl
[2] Zenkov V. I., “Struktura peresechenii nilpotentnykh $\pi$-podgrupp v $\pi$-razreshimykh konechnykh gruppakh”, Sib. mat. zhurn., 34:4 (1993), 103–107 | MR | Zbl
[3] Vdovin E. P., “Regular orbits of solvable linear $p'$-groups”, Sib. Electronic Math. Reports, 4 (2007), 345–360 | MR | Zbl
[4] Zenkov V. I., “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fundament. i prikl. matematika, 2:1 (1996), 1–92 | MR | Zbl