Euler's broken lines in systems with Carathéodory conditions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 167-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider Euler's broken lines in a system with its right-hand side measurable in time and investigate their convergence to trajectories of the system. Counterexamples are given that show that partitions with a small diameter do not guarantee the proximity to the funnel of trajectories. For any Carathéodory function, it is suggested to equip the set of closed subsets of the time interval with a metric. We prove that, under conditions close to Carathéodory ones, the convergence with respect to the metric guarantees the convergence of Euler's broken lines to the funnel of solutions of the system. As a consequence, it is shown that if the right-hand side is continuous and the sublinear growth condition is satisfied, then a sufficiently small diameter of the partition guarantees the proximity of Euler's broken line to the funnel of solutions of the system.
@article{TIMM_2007_13_2_a15,
     author = {D. V. Khlopin},
     title = {Euler's broken lines in systems with {Carath\'eodory} conditions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {167--183},
     year = {2007},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a15/}
}
TY  - JOUR
AU  - D. V. Khlopin
TI  - Euler's broken lines in systems with Carathéodory conditions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 167
EP  - 183
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a15/
LA  - ru
ID  - TIMM_2007_13_2_a15
ER  - 
%0 Journal Article
%A D. V. Khlopin
%T Euler's broken lines in systems with Carathéodory conditions
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 167-183
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a15/
%G ru
%F TIMM_2007_13_2_a15
D. V. Khlopin. Euler's broken lines in systems with Carathéodory conditions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 167-183. http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a15/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 623 pp. | MR

[2] Gelbaum B., Olmsted Dzh., Kontrprimery v analize, Mir, M., 1967, 252 pp. | Zbl

[3] Danford N., Shvarts Dzh. T., Lineinye operatory: Obschaya teoriya, IL, M., 1962, 855 pp.

[4] Druzhinin E. I., “Obuslovlennost pryamykh algoritmov rascheta programmnykh upravlenii v nelineinykh sistemakh”, Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi (CGS'2005), Mat-ly konf. Ekaterinburg, 2005, 59–61

[5] Kaziev E. A., “Odnostoronnie otsenki pri reshenii differentsialnykh uravnenii metodom lomanykh Eilera”, Izv. AH Azerb. SSR. Seriya fiz.-tekh. i mat. nauk, 1966, no. 1, 112–119 | MR | Zbl

[6] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986, 296 pp. | MR | Zbl

[7] Tolstonogov A. A., “Teorema Bogolyubova pri ogranicheniyakh, porozhdennykh polunepreryvnym snizu differentsialnym vklyucheniem”, Mat. sb., 196:2 (2005), 117–138 | MR | Zbl

[8] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[9] Khlopin D. V., “Lomanye Eilera v sistemakh s izmerimoi po vremeni pravoi chastyu”, Problemy teoreticheskoi i prikladnoi matematiki, Tr. 38-i region. molodezh. konf., Ekaterinburg, 2007, 394–399

[10] Khlopin D. V., “Otslezhivanie predelnykh traektorii v razryvnykh po vremeni upravlyaemykh sistemakh”, Matematika, informatika, upravlenie, Tr. 4-i vseros. konf. (CD-ROM), Irkutsk, 2005 | Zbl

[11] Averna D., Fiacca A., “On the Scorza Dragoni property”, Atti Sem. Mat. Fis. Univ. Modena, 33:2 (1984), 313–318 | MR | Zbl

[12] Averna D., Fiacca A., “Some results on theorems of G. Scorza Dragoni and L. Tibaldo in abstract spaces”, Riv. Mat. Univ. Parma, 12:4 (1986), 217–225 | MR | Zbl

[13] Gaĭdukevich O., Maslyuchenko V. K., “Novi uzagalnennya teoremi Skortsa Dragoni”, Ukr. mat. zhurn., 52:7 (2000), 881–888 | MR

[14] Kuratowski C., “Sur les espaces complets”, Fund. Math., 15 (1930), 300–309

[15] Miriča S., “Feedback differential systems: approximate and limiting trajectories”, Studia Univ. Babeş-Bolyai Math., 49:3 (2004), 83–96 | MR | Zbl

[16] Nussbaum R. D., “A generalisation of the Ascoli theorem and an application to functional differential equations”, J. Math. Anal. Appl., 35:3 (1971), 600–610 | DOI | MR | Zbl