Approximations by polynomial and trigonometric splines of third order preserving some properties of approximated functions
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 156-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper with the help of parabolic splines we construct a linear method of approximate recovery of functions by their values on an arbitrary grid. In the method, a spline inherits the properties of monotonicity and convexity from the approximated function, and is sufficiently smooth. In addition, the constructed linear operator as an operator acting from the space of continuous functions to the same space has the norm equal to one. We also obtain similar results for trigonometric splines of third order.
@article{TIMM_2007_13_2_a14,
     author = {Yu. N. Subbotin},
     title = {Approximations by polynomial and trigonometric splines of third order preserving some properties of approximated functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {156--166},
     year = {2007},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a14/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
TI  - Approximations by polynomial and trigonometric splines of third order preserving some properties of approximated functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 156
EP  - 166
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a14/
LA  - ru
ID  - TIMM_2007_13_2_a14
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%T Approximations by polynomial and trigonometric splines of third order preserving some properties of approximated functions
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 156-166
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a14/
%G ru
%F TIMM_2007_13_2_a14
Yu. N. Subbotin. Approximations by polynomial and trigonometric splines of third order preserving some properties of approximated functions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 13 (2007) no. 2, pp. 156-166. http://geodesic.mathdoc.fr/item/TIMM_2007_13_2_a14/

[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[2] Subbotin Yu. N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 33:7 (1993), 996–1003 | MR | Zbl

[3] Shevaldin V. T., “Approksimatsiya lokalnymi parabolicheskimi splainami s proizvolnym raspolozheniem uzlov”, Sib. zhurn. vychisl. matematiki, 8:1 (2005), 77–88 | MR | Zbl

[4] Kostousov K. V., Shevaldin V. T., “Approksimatsiya lokalnymi trigonometricheskimi splainami”, Mat. zametki, 77:3 (2005), 354–363 | MR | Zbl

[5] Lyche T., Schumaker L. L., “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[6] Shevaldina E. V., “Approksimatsiya lokalnymi eksponentsialnymi splainami s proizvolnymi uzlami”, Sib. zhurn. vychisl. matematiki, 9:4 (2006), 391–402