Geometric equivalence of groups
Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 57-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Based on the notion of geometric equivalence of groups, new classes of groups, namely, geometric varieties of groups, are defined. Some properties of such classes, including their relation to quasi-varieties and prevarieties of groups, are studied. Examples of torsion free nilpotent groups that are geometrically nonequivalent to their minimal completions, as well as an example of centrally metabelian groups that are geometrically nonequivalent but generate equal quasi-varieties, are given.
@article{TIMM_2007_13_1_a3,
     author = {V. V. Bludov and B. V. Gusev},
     title = {Geometric equivalence of groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {57--78},
     year = {2007},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a3/}
}
TY  - JOUR
AU  - V. V. Bludov
AU  - B. V. Gusev
TI  - Geometric equivalence of groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 57
EP  - 78
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a3/
LA  - ru
ID  - TIMM_2007_13_1_a3
ER  - 
%0 Journal Article
%A V. V. Bludov
%A B. V. Gusev
%T Geometric equivalence of groups
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 57-78
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a3/
%G ru
%F TIMM_2007_13_1_a3
V. V. Bludov; B. V. Gusev. Geometric equivalence of groups. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 57-78. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a3/

[1] Baumslag G., “On the residual nilpotence of some varietal products”, Trans. Amer. Math. Soc., 109 (1963), 357–365 | DOI | MR | Zbl

[2] Baumslag G., Miasnikov A., Remeslennikov V., “Algebraic geometry over groups I: Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[3] Baumslag G., Miasnikov A. and Roman'kov V., “Two theorems about equationally Noetherian groups”, J. Algebra, 194 (1997), 654–664 | DOI | MR | Zbl

[4] Bludov V., “Ordered groups in which every automorphism preserves the order”, Ordered Algebraic Structures: Nanjing, ed. W. C. Holland, Gordon and Breach, Amsterdam, 2001, 23–28 | MR | Zbl

[5] Bludov V., “Geometricheskaya ekvivalentnost grupp i kvazimnogoobraziya”, Logika i prilozheniya, Tez. mezhdunar. konf., Novosibirsk, 2000, 18 | Zbl

[6] Bludov V. V., Gusev B. V., “Geometricheskaya ekvivalentnost nilpotentnykh grupp”, Kombinatornye i vychislitelnye metody v matematike, Tez. dokl. mezhdunar. konf., Omsk, 1998, 31–32

[7] Bludov V. V., Gusev B. V., “O geometricheskoi ekvivalentnosti grupp”, Algebra i lineinaya optimizatsiya, Tr. mezhdunar. seminara, posvyaschennogo 90-letiyu so dnya rozhd. S. N. Chernikova, Ekaterinburg, 2002, 59–65

[8] Bludov V. V., Gusev B. V., “O geometricheskikh mnogoobraziyakh grupp”, Algebra i ee prilozheniya, Tez. dokl. mezhdunar. konf., KGU, Krasnoyarsk, 2002, 18–19

[9] Göbel R. and Shelah S., “Radicals and Plotkin's problem concerning geometrically equivalent groups”, Proc. Amer. Math. Soc., 130:3 (2002), 673–674 | DOI | MR | Zbl

[10] Kargapolov A. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1996 | MR | Zbl

[11] Kon P., Universalnaya algebra, Nauka, M., 1968 | MR

[12] Kurosh A. G., Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[13] Maltsev A. I., “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR. Matematika, 13:1 (1949), 9–32 ; Избранные труды, Т. 1, Наука, М., 1976, 220–240 | MR

[14] Maltsev A. I., “Nilpotentnye gruppy bez krucheniya”, Izv. AN SSSR. Matematika, 13:3 (1949), 201–212 ; Избранные труды, Т. 1, Наука, М., 1976, 241–251 | MR

[15] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970 | MR

[16] Melnikov O. V., Remeslennikov V. N., Romankov V. A. i dr., Obschaya algebra, T. 1, Nauka, M., 1990

[17] Miasnikov A., Remeslennikov V., “Algebraic geometry over groups II: Logical Foundations”, J. Algebra, 234 (2000), 225–276 | DOI | MR

[18] Nereshennye voprosy teorii grupp: Kourovskaya tetrad, Novosib. gos. un-t, Novosibirsk, 2002 | MR

[19] Plotkin B., “Varieties of algebras and algebraic varieties”, Israel J. of Math., 96 (1996), 511–522 | DOI | MR | Zbl

[20] Plotkin B., “Algebraic geometry in universal algebra”, Mezhdunar. alg. konf. pamyati D. K. Faddeeva, Sankt-Peterburg, 1997, 99–100

[21] Plotkin B., Seven Lectures on Universal Algebraic Geometry, Preprint no. 1, Institute of Mathematics, Hebrew University, Jerusalem, 2000–2001

[22] Plotkin B., “Some problems in nonclassical algebraic geometry”, Ukrain. Math. J., 54:6 (2002), 1019–1026 | DOI | MR | Zbl