Geometric equivalence of groups
Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 57-78

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the notion of geometric equivalence of groups, new classes of groups, namely, geometric varieties of groups, are defined. Some properties of such classes, including their relation to quasi-varieties and prevarieties of groups, are studied. Examples of torsion free nilpotent groups that are geometrically nonequivalent to their minimal completions, as well as an example of centrally metabelian groups that are geometrically nonequivalent but generate equal quasi-varieties, are given.
@article{TIMM_2007_13_1_a3,
     author = {V. V. Bludov and B. V. Gusev},
     title = {Geometric equivalence of groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {57--78},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a3/}
}
TY  - JOUR
AU  - V. V. Bludov
AU  - B. V. Gusev
TI  - Geometric equivalence of groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2007
SP  - 57
EP  - 78
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a3/
LA  - ru
ID  - TIMM_2007_13_1_a3
ER  - 
%0 Journal Article
%A V. V. Bludov
%A B. V. Gusev
%T Geometric equivalence of groups
%J Trudy Instituta matematiki i mehaniki
%D 2007
%P 57-78
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a3/
%G ru
%F TIMM_2007_13_1_a3
V. V. Bludov; B. V. Gusev. Geometric equivalence of groups. Trudy Instituta matematiki i mehaniki, Группы и графы, Tome 13 (2007) no. 1, pp. 57-78. http://geodesic.mathdoc.fr/item/TIMM_2007_13_1_a3/