Approximation by local $L$-splines corresponding to a~linear differential operator of the second order
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 195-213

Voir la notice de l'article provenant de la source Math-Net.Ru

For the class of functions $W_\infty^{\mathcal L_2}=\{f:f'\in AC,\|\mathcal L_2(D)f\|_\infty\le1\}$, where $\mathcal L_2(D)$ is a linear differential operator of the second order whose characteristic polynomial has only real roots, we construct a noninterpolating linear positive method of exponential spline approximation possessing extremal and smoothing properties and locally inheriting the monotonicity of the initial data (the values of a function $f\in W_\infty^{\mathcal L_2}$ at the points of a uniform grid). The approximation error is calculated exactly for this class of functions in the uniform metric.
@article{TIMM_2006_12_2_a16,
     author = {V. T. Shevaldin},
     title = {Approximation by local $L$-splines corresponding to a~linear differential operator of the second order},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {195--213},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Approximation by local $L$-splines corresponding to a~linear differential operator of the second order
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 195
EP  - 213
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/
LA  - ru
ID  - TIMM_2006_12_2_a16
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Approximation by local $L$-splines corresponding to a~linear differential operator of the second order
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 195-213
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/
%G ru
%F TIMM_2006_12_2_a16
V. T. Shevaldin. Approximation by local $L$-splines corresponding to a~linear differential operator of the second order. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 195-213. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/