Approximation by local $L$-splines corresponding to a linear differential operator of the second order
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 195-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the class of functions $W_\infty^{\mathcal L_2}=\{f:f'\in AC,\|\mathcal L_2(D)f\|_\infty\le1\}$, where $\mathcal L_2(D)$ is a linear differential operator of the second order whose characteristic polynomial has only real roots, we construct a noninterpolating linear positive method of exponential spline approximation possessing extremal and smoothing properties and locally inheriting the monotonicity of the initial data (the values of a function $f\in W_\infty^{\mathcal L_2}$ at the points of a uniform grid). The approximation error is calculated exactly for this class of functions in the uniform metric.
@article{TIMM_2006_12_2_a16,
     author = {V. T. Shevaldin},
     title = {Approximation by local $L$-splines corresponding to a~linear differential operator of the second order},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {195--213},
     year = {2006},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Approximation by local $L$-splines corresponding to a linear differential operator of the second order
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 195
EP  - 213
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/
LA  - ru
ID  - TIMM_2006_12_2_a16
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Approximation by local $L$-splines corresponding to a linear differential operator of the second order
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 195-213
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/
%G ru
%F TIMM_2006_12_2_a16
V. T. Shevaldin. Approximation by local $L$-splines corresponding to a linear differential operator of the second order. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 195-213. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/

[1] Subbotin Yu. N., “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 33:7 (1993), 996–1003 | MR | Zbl

[2] Kostousov K. V., Shevaldin V. T., “Approximation by Local Exponential Splines”, Proc. of the Steklov Inst. of Math., Suppl. 1, 2004, S147–S157 | MR

[3] Kostousov K. V., Shevaldin V. T., “Approksimatsiya lokalnymi trigonometricheskimi splainami”, Mat. zametki, 77:3 (2005), 354–363 | MR | Zbl

[4] Shevaldin V. T., “Approksimatsiya lokalnymi parabolicheskimi splainami s proizvolnym raspolozheniem uzlov”, Sib. zhurn. vychisl. matematiki, 8:1 (2005), 77–88 | MR | Zbl

[5] ter Morsche H. G., Interpolation and extremal properties of $L$-splines functions, Dissertation, Technische Hogeschool Eindhoven, Eindhoven, 1982 | MR

[6] Schumaker L. L., Spline Functions: Basic Theory, Wiley Interscience, New York, 1981 | MR | Zbl

[7] Kvasov B. I., Izogeometricheskaya approksimatsiya splainami, Uchebn. posobie, Novosibirskii un-t, Novosibirsk, 1998

[8] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl

[9] Krein M. G., “K teorii nailuchshego priblizheniya periodicheskikh funktsii”, Dokl. AN SSSR, 18:4–5 (1938), 603–607

[10] Shevaldin V. T., “$L$-splainy i poperechnik”, Mat. zametki, 33:5 (1983), 735–744 | MR | Zbl

[11] Shevaldin V. T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN SSSR, 164, 1983, 203–240 | MR | Zbl

[12] Volodina I. N., “Exact value of widths of certain class of solutions of linear differential equations”, Analysis Math., 11:1 (1985), 85–92 | DOI | MR | Zbl

[13] Piegl L., Tiller W., The NURBS Book, Springer, Berlin, 1997 | Zbl