Approximation by local $L$-splines corresponding to a~linear differential operator of the second order
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 195-213
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the class of functions $W_\infty^{\mathcal L_2}=\{f:f'\in AC,\|\mathcal L_2(D)f\|_\infty\le1\}$, where $\mathcal L_2(D)$ is a linear differential operator of the second order whose characteristic polynomial has only real roots, we construct a noninterpolating linear positive method of exponential spline approximation possessing extremal and smoothing properties and locally inheriting the monotonicity of the initial data (the values of a function $f\in W_\infty^{\mathcal L_2}$ at the points of a uniform grid). The approximation error is calculated exactly for this class of functions in the uniform metric.
			
            
            
            
          
        
      @article{TIMM_2006_12_2_a16,
     author = {V. T. Shevaldin},
     title = {Approximation by local $L$-splines corresponding to a~linear differential operator of the second order},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {195--213},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/}
}
                      
                      
                    TY - JOUR AU - V. T. Shevaldin TI - Approximation by local $L$-splines corresponding to a~linear differential operator of the second order JO - Trudy Instituta matematiki i mehaniki PY - 2006 SP - 195 EP - 213 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/ LA - ru ID - TIMM_2006_12_2_a16 ER -
%0 Journal Article %A V. T. Shevaldin %T Approximation by local $L$-splines corresponding to a~linear differential operator of the second order %J Trudy Instituta matematiki i mehaniki %D 2006 %P 195-213 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/ %G ru %F TIMM_2006_12_2_a16
V. T. Shevaldin. Approximation by local $L$-splines corresponding to a~linear differential operator of the second order. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 195-213. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a16/
