Voir la notice du chapitre de livre
@article{TIMM_2006_12_2_a0,
author = {S. N. Avvakumov and Yu. N. Kiselev},
title = {Some algorithms of optimal control},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {3--17},
year = {2006},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a0/}
}
S. N. Avvakumov; Yu. N. Kiselev. Some algorithms of optimal control. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 3-17. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a0/
[1] Davidenko D. F., “Ob odnom novom metode chislennogo resheniya sistem nelineinykh uravnenii”, Dokl. AN SSSR, 88:4 (1953), 601–602 | MR | Zbl
[2] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR
[3] Bellman R. E., Kalaba R. E., Quasilinearization and nonlinear boundary value problems, New York, 1965
[4] Shamanskii V. E., Metody chislennogo resheniya kraevykh zadach na ETsVM, Naukova dumka, Kiev, 1966
[5] Ortega J. M., Rheinboldt W. C., Iterative solution of nonlinear equations in several variables, Acad. Press, New York, 1970 | MR | Zbl
[6] Avvakumov S. N., “Metod prodolzheniya po parametru s obratnoi svyazyu”, “Pontryaginskie chteniya-7” na VMSh “Sovremennye metody v teorii kraevykh zadach”, Tez. dokl., Voronezh, 1996, 6
[7] Kiselev Yu. N., Lineinaya teoriya bystrodeistviya s vozmuscheniyami, Izd-vo MGU, M., 1986
[8] Kiselev Yu. N., “Bystroskhodyaschiesya algoritmy resheniya lineinoi zadachi bystrodeistviya”, Kibernetika, 1990, no. 6, 47–57 | MR | Zbl
[9] Kiselev Yu. N., Orlov M. V., “Chislennye algoritmy lineinykh bystrodeistvii”, Zhurn. vychisl. matematiki i mat. fiziki, 1991, no. 12, 1763–1771 | MR
[10] Kiselev Yu. N., Orlov M. V., “Metod potentsialov v lineinoi zadache bystrodeistviya”, Differents. uravneniya, 32:1 (1996), 44–51 | MR | Zbl
[11] Kiselev Yu. N., Orlov M. V., “Nelineinaya kraevaya zadacha printsipa maksimuma v lineinoi zadache bystrodeistviya”, Differents. uravneniya, 1995, no. 12, 1843–1850 | MR | Zbl
[12] Avvakumov S. N., Kiselev Yu. N., Orlov M. V., “Metody resheniya nekotorykh zadach optimalnogo upravleniya na osnove printsipa maksimuma Pontryagina”, Tr. Mat. in-ta RAN, 211, 1995, 3–31 | MR | Zbl
[13] Avvakumov S. N., “Gladkaya approksimatsiya vypuklykh kompaktov”, Tr. In-ta matematiki i mekhaniki, 4, UrO RAN, Ekaterinburg, 1996, 184–200 | MR
[14] Stoker J. J., Nonlinear vibrations, New York, 1950
[15] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | Zbl
[16] Avvakumov S. N., Kiselev Yu. N., “Primery resheniya kraevykh zadach printsipa maksimuma”, Matematicheskoe modelirovanie v estestvennykh i gumanitarnykh naukakh, Tez. dokl. konf., Voronezh, 2000, 7
[17] Avvakumov S., Kiselev Yu., Boundary value problem for ODE with applications to optimal control, Report at the Conference SSI-2004, USA. Orlando. Florida, 5 pp.
[18] Avvakumov S. N., Kiselev Yu. N., “Opornye funktsii nekotorykh spetsialnykh mnozhestv”, Problemy dinamicheskogo upravleniya, Vyp. 1, eds. Yu. S. Osipov, A. V. Kryazhimskii, MAKS Press, M., 2005, 24–110 | MR
[19] Kiselev Yu. N., “Postroenie tochnykh reshenii dlya nelineinoi zadachi bystrodeistviya spetsialnogo vida”, Fundament. i prikl. matematika, 3:3 (1997), 847–868 | MR | Zbl
[20] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR
[21] Kiselev Yu. N., “Dostatochnye usloviya optimalnosti v terminakh konstruktsii printsipa maksimuma Pontryagina”, Matematicheskie modeli v ekonomike i biologii: Materialy nauchnogo seminara (Planernoe Moskovskoi obl.), MAKS Press, M., 2003, 57–67
[22] Kiselev Yu. N., “Lineino-kvadratichnaya zadacha optimalnogo upravleniya: analiz s pomoschyu printsipa maksimuma”, Problemy dinamicheskogo upravleniya, Vyp. 1, eds. Yu. S. Osipov, A. V. Kryazhimskii, MAKS Press, M., 2005, 168–182
[23] Avvakumov S. N., Kiselev Yu. N., “Chislennyi metod poiska optimalnogo resheniya: model “ROST””, Matematicheskie modeli v ekonomike i biologii, Materialy nauchnogo seminara (Planernoe Moskovskoi obl.), MAKS Press, M., 2003, 1–15
[24] Avvakumov S. N., Kiselev Yu. N., “Qualitative study and algorithms in the mathematical model of innovation diffusion”, J. Math. Sci., 116:6 (2003), 3657–3672 | DOI | MR | Zbl