@article{TIMM_2006_12_1_a16,
author = {A. G. Chentsov},
title = {Nonsequential approximate solutions in abstract problems of attainability},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {216--241},
year = {2006},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a16/}
}
A. G. Chentsov. Nonsequential approximate solutions in abstract problems of attainability. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 216-241. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a16/
[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR
[2] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR
[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR
[4] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovremennaya matematika i ee prilozheniya, 26, Akademiya Nauk Gruzii. Institut kibernetiki, 2005, 119–150 | MR
[5] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Plenum Publishing Corporation, New York, 1996, 244 pp. | MR | Zbl
[6] Chentsov A. G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht, 1997, 322 pp. | MR | Zbl
[7] Chentsov A. G. and Morina S. I., Extensions and Relaxations, Kluwer Academic Publishers, Dordrecht, 2002, 408 pp. | MR | Zbl
[8] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1970, 488 pp. | MR
[9] Daffin R. Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, M., 1959, 263–267
[10] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp. | MR
[11] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo Tbilisskogo un-ta, Tbilisi, 1975, 229 pp. | MR
[12] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl
[13] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 518 pp. | MR
[14] Krasovskii N. N., Subbotin A. I., “Alternativa dlya igrovoi zadachi sblizheniya”, Prikl. matematika i mekhanika, 34:6 (1970), 1005–1022 | MR
[15] Osipov Yu. S., “Differentsialnye igry dlya sistem s posledeistviem”, Dokl. AN SSSR, 196:4 (1971), 779–782 | MR | Zbl
[16] Osipov Yu. S., “K teorii differentsialnykh igr s raspredelennymi parametrami”, Dokl. AN SSSR, 223:6 (1975), 1314–1317 | MR | Zbl
[17] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981, 431 pp. | MR
[18] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR
[19] Čech E., Topological spaces, Academia, Prague, 1966, 893 pp. | MR
[20] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974, 423 pp. | MR
[21] Aleksandrov P. S., Teoriya funktsii deistvitelnogo peremennogo i teoriya topologicheskikh prostranstv, Nauka, M., 1978, 415 pp. | MR
[22] Arkhangelskii A. V., “Kompaktnost”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 50, VINITI, M., 1989, 5–128 | MR
[23] Skvortsova A. V., Chentsov A. G., “O postroenii asimptoticheskogo analoga puchka traektorii lineinoi sistemy s odnoimpulsnym upravleniem”, Differents. uravneniya, 40:12 (2004), 1645–1657 | MR | Zbl
[24] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp. | MR
[25] Chentsov A. G., “Some questions of asymptotic analysis: approximate solutions and extension constructions”, Functional Differential Equations, 12:1–2 (2005), 119–148 | MR | Zbl
[26] Chentsov A. G., “K voprosu o primenenii kompaktifikatsii Stouna–Chekha v nekotorykh zadachakh asimptoticheskogo analiza”, Dokl. Akademii Nauk, 399:6 (2004), 737–740 | MR
[27] Chentsov A. G., “Struktura obobschennykh mnozhestv prityazheniya i konstruktsii rasshirenii”, Dokl. Akademii Nauk, 402:2 (2005), 173–176 | MR
[28] Chentsov A. G., “Obobschennye mnozhestva prityazheniya i priblizhennye resheniya, ikh formiruyuschie”, Tr. In-ta matematiki i mekhaniki UrO RAN, 10, no. 2, Ekaterinburg, 2004, 178–196
[29] Danford N., Shvarts Dzh. T., Lineinye operatory. Osnovnye struktury, Izd-vo inostr. lit-ry, M., 1962, 895 pp.
[30] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, Tom 1, Mir, M., 1977, 357 pp. | MR
[31] Chentsov A. G., “Universal properties of generalized integral constraints in the class of finitely additive measures”, Functional Differential Equations, 5:1–2 (1998), 65–105 | MR