Nonsequential approximate solutions in abstract problems of attainability
Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 216-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of constructing attraction sets in a topological space is considered in the case when the choice of the asymptotic version of the solution is subject to constraints in the form of a nonempty family of sets. Each of these sets must contain an “almost entire” solution (for example, all elements of the sequence, starting from some number, when solution-sequences are used). In the paper, problems of the structure of the attraction set are investigated. The dependence of attraction sets on the topology and the family determining “asymptotic” constraints is considered. Some issues concerned with the application of Stone–Čech compactification and the Wallman extension are investigated.
@article{TIMM_2006_12_1_a16,
     author = {A. G. Chentsov},
     title = {Nonsequential approximate solutions in abstract problems of attainability},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {216--241},
     year = {2006},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a16/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Nonsequential approximate solutions in abstract problems of attainability
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 216
EP  - 241
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a16/
LA  - ru
ID  - TIMM_2006_12_1_a16
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Nonsequential approximate solutions in abstract problems of attainability
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 216-241
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a16/
%G ru
%F TIMM_2006_12_1_a16
A. G. Chentsov. Nonsequential approximate solutions in abstract problems of attainability. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 216-241. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a16/

[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[2] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[3] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[4] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovremennaya matematika i ee prilozheniya, 26, Akademiya Nauk Gruzii. Institut kibernetiki, 2005, 119–150 | MR

[5] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Plenum Publishing Corporation, New York, 1996, 244 pp. | MR | Zbl

[6] Chentsov A. G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht, 1997, 322 pp. | MR | Zbl

[7] Chentsov A. G. and Morina S. I., Extensions and Relaxations, Kluwer Academic Publishers, Dordrecht, 2002, 408 pp. | MR | Zbl

[8] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1970, 488 pp. | MR

[9] Daffin R. Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, M., 1959, 263–267

[10] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp. | MR

[11] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo Tbilisskogo un-ta, Tbilisi, 1975, 229 pp. | MR

[12] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[13] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 518 pp. | MR

[14] Krasovskii N. N., Subbotin A. I., “Alternativa dlya igrovoi zadachi sblizheniya”, Prikl. matematika i mekhanika, 34:6 (1970), 1005–1022 | MR

[15] Osipov Yu. S., “Differentsialnye igry dlya sistem s posledeistviem”, Dokl. AN SSSR, 196:4 (1971), 779–782 | MR | Zbl

[16] Osipov Yu. S., “K teorii differentsialnykh igr s raspredelennymi parametrami”, Dokl. AN SSSR, 223:6 (1975), 1314–1317 | MR | Zbl

[17] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981, 431 pp. | MR

[18] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[19] Čech E., Topological spaces, Academia, Prague, 1966, 893 pp. | MR

[20] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974, 423 pp. | MR

[21] Aleksandrov P. S., Teoriya funktsii deistvitelnogo peremennogo i teoriya topologicheskikh prostranstv, Nauka, M., 1978, 415 pp. | MR

[22] Arkhangelskii A. V., “Kompaktnost”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 50, VINITI, M., 1989, 5–128 | MR

[23] Skvortsova A. V., Chentsov A. G., “O postroenii asimptoticheskogo analoga puchka traektorii lineinoi sistemy s odnoimpulsnym upravleniem”, Differents. uravneniya, 40:12 (2004), 1645–1657 | MR | Zbl

[24] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp. | MR

[25] Chentsov A. G., “Some questions of asymptotic analysis: approximate solutions and extension constructions”, Functional Differential Equations, 12:1–2 (2005), 119–148 | MR | Zbl

[26] Chentsov A. G., “K voprosu o primenenii kompaktifikatsii Stouna–Chekha v nekotorykh zadachakh asimptoticheskogo analiza”, Dokl. Akademii Nauk, 399:6 (2004), 737–740 | MR

[27] Chentsov A. G., “Struktura obobschennykh mnozhestv prityazheniya i konstruktsii rasshirenii”, Dokl. Akademii Nauk, 402:2 (2005), 173–176 | MR

[28] Chentsov A. G., “Obobschennye mnozhestva prityazheniya i priblizhennye resheniya, ikh formiruyuschie”, Tr. In-ta matematiki i mekhaniki UrO RAN, 10, no. 2, Ekaterinburg, 2004, 178–196

[29] Danford N., Shvarts Dzh. T., Lineinye operatory. Osnovnye struktury, Izd-vo inostr. lit-ry, M., 1962, 895 pp.

[30] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, Tom 1, Mir, M., 1977, 357 pp. | MR

[31] Chentsov A. G., “Universal properties of generalized integral constraints in the class of finitely additive measures”, Functional Differential Equations, 5:1–2 (1998), 65–105 | MR