Divergence everywhere of subsequences of partial sums of trigonometric Fourier series
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 112-119
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that for any increasing sequence of natural numbers $\{m_j\}$ and any nondecreasing function $\varphi\colon[0,+\infty)\to[0,+\infty)$ satisfying the condition $\varphi(u)=o(u\ln\ln)$ ($u\to\infty$) there is a function $f\in L[0,2\pi]$ such that
$$
\int_0^{2\pi}\varphi(|f(x)|)\,dx\infty,
$$
and the Fourier partial sums $S_{m_j}(f)$ diverge unboundedly everywhere.
			
            
            
            
          
        
      @article{TIMM_2005_11_2_a8,
     author = {S. V. Konyagin},
     title = {Divergence everywhere of subsequences of partial sums of trigonometric {Fourier} series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {112--119},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a8/}
}
                      
                      
                    TY - JOUR AU - S. V. Konyagin TI - Divergence everywhere of subsequences of partial sums of trigonometric Fourier series JO - Trudy Instituta matematiki i mehaniki PY - 2005 SP - 112 EP - 119 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a8/ LA - ru ID - TIMM_2005_11_2_a8 ER -
S. V. Konyagin. Divergence everywhere of subsequences of partial sums of trigonometric Fourier series. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 112-119. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a8/
