Divergence everywhere of subsequences of partial sums of trigonometric Fourier series
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 112-119

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any increasing sequence of natural numbers $\{m_j\}$ and any nondecreasing function $\varphi\colon[0,+\infty)\to[0,+\infty)$ satisfying the condition $\varphi(u)=o(u\ln\ln)$ ($u\to\infty$) there is a function $f\in L[0,2\pi]$ such that $$ \int_0^{2\pi}\varphi(|f(x)|)\,dx\infty, $$ and the Fourier partial sums $S_{m_j}(f)$ diverge unboundedly everywhere.
@article{TIMM_2005_11_2_a8,
     author = {S. V. Konyagin},
     title = {Divergence everywhere of subsequences of partial sums of trigonometric {Fourier} series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {112--119},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a8/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - Divergence everywhere of subsequences of partial sums of trigonometric Fourier series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 112
EP  - 119
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a8/
LA  - ru
ID  - TIMM_2005_11_2_a8
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T Divergence everywhere of subsequences of partial sums of trigonometric Fourier series
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 112-119
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a8/
%G ru
%F TIMM_2005_11_2_a8
S. V. Konyagin. Divergence everywhere of subsequences of partial sums of trigonometric Fourier series. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 112-119. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a8/