Growth rate of sequences of multiple rectangular Fourier sums
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 10-29
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the case when a sequence of $d$-dimensional vectors $\mathbf n_k=(n_k^1,n_k^2,\dots,n_k^d)$ with nonnegative integral coordinates satisfies the condition
$$
n_k^j=\alpha_jm_k+O(1),\quad k\in\mathbb N,\quad1\le j\le d,
$$
where $\alpha_1\dots,\alpha_d$ are nonnegative real numbers and  $\{m_k\}_{k=1}^\infty$ is a sequence of positive integers, the following estimate of the rate of growth of sequences $S_{\mathbf n_k}(f,\mathbf x)$ of rectangular partial sums of multiple trigonometric Fourier series is obtained: if $f\in L(\ln^+L)^{d-1}([-\pi,\pi)^d)$, then
$$
S_{\mathbf n_k}(f,\mathbf x)=o(\ln k)\quad\text{a.e.}
$$
Analogous estimates are valid for conjugate series as well.
			
            
            
            
          
        
      @article{TIMM_2005_11_2_a1,
     author = {N. Yu. Antonov},
     title = {Growth rate of sequences of multiple rectangular {Fourier} sums},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {10--29},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a1/}
}
                      
                      
                    N. Yu. Antonov. Growth rate of sequences of multiple rectangular Fourier sums. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 10-29. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a1/
